參考文獻 |
[1] Allil, M. S., “Wavelet modeling using finite mixtures of generalized Gaussian distributions: application to texture discrimination and retrieval,” IEEE Trans. Image Processing, vol.21, no.4, pp.1452-1464, April 2012.
[2] Avci, E., “Comparison of wavelet families for texture classification by using wavelet packet entropy adaptive network based fuzzy inference system,” Applied Soft Computing, vol.8, pp.225-231, 2008.
[3] Bayram, İ. and I. W. Selesnick, “On the dual-tree complex wavelet packet and M-band transforms,” IEEE Trans. Signal Processing, vol.56, no.6, pp.2298-2310, June 2008.
[4] Bendjebbour, A., Y. Delignon, L. Fouque, V. Samson, and W. Pieczynski, “Multisensor image segmentation using Dempster-Shafer fusion in Markov fields context,” IEEE Trans. Geoscience and Remote Sensing, vol.39, no.8, pp.1789-1798, August 2001.
[5] Bharati, M. H., J. J. Liu, and J. F. MacGregor, “Image texture analysis: methods and comparisons,” Chemometrics and Intelligent Laboratory Systems, vol.72, pp.57-71, 2004.
[6] Bouman, C. A. and M. Shapiro, “A multiscale random field model for Bayesian image segmentation,” IEEE Trans. Image Processing, vol.3, no.2, pp.162-177, 1994.
[7] Castellano, G., L. Bonilha, L. M. Li, and F. Cendes, “Texture analysis of medical images,” Clinical Radiology, vol.59, no.2, pp.1061-1069, 2004.
[8] Chaabane, S. B., M. Sayadi, F. Fnaiech, E. Brassart, and F. Betin, “A new method for the estioation of mass functions in Dempster-Shafer’s evidence theory: application to colour image segmentation,” Circuits, Systems, and Signal Processing, vol.30, pp.55-71, 2011.
[9] Charles, F. V. L, Introduction to Scientific Computing: A Matrix Vector Approach Using MATLAB, Prentice Hall, New York, 1996.
[10] Chaux, C., L. Duval, and J.-C. Pesquet, “Image analysis using a dual-tree M-band wavelet transform,” IEEE Trans. Image Processing, vol.15, no.8, pp.2397-2412, August 2006.
[11] Chen, H. and C. A. Bouman, “Multiscale Bayesian segmentation using a trainable context model,” IEEE Trans. Image Processing, vol.10, no.4, pp.511-525, April 2001.
[12] Chen, J.-L. and A. Kundu, “Automatic unsupervised texture segmentation using hidden Markov model,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Minneapolis, Minnesota, Apr. 27-30, 1993, pp.21-24.
[13] Choi, H. and R. G. Baraniuk, “Image segmentation using wavelet-domain classification,” in Proc. SPIE Conf. Mathematical Modeling, Bayesian Estimation, and Inverse Problems, Denver, Colorado, July 21-23, 1999, pp.306-320.
[14] Choi, H. and R. G. Baraniuk, “Multiscale image segmentation using wavelet-domain hidden Markov models,” IEEE Trans. Image Processing, vol.10, no.9, pp.1039-1321, 2001.
[15] Crouse, M. S., R. D. Nowak, and R. G. Baraniuk, “Wavelet-based statistical signal processing using hidden Markov models,” IEEE Trans. Signal Processing, vol.46, no.4, pp.886-902, 1998.
[16] Denceux, T., “A k-nearest neighbor classification rule based on Dempster-Shafer theory,” IEEE Trans. Systems, Man, and Cybernetics, vol.25, no.5, pp.804-813, May 1995.
[17] Dunn, D. and W. E. Higgins, “Optimal Gabor filter for texture segmentation,” IEEE Trans. Image Processing, vol.4, no.7, pp.947-964, July 1995.
[18] Fan, G. L. and X. G. Xia, “A joint multicontext and multiscale approach to Bayesian image segmentation,” IEEE Trans. Geoscience and Remote Sensing, vol.39, no.12, pp.2680-2688, 2001.
[19] Fan, G. L. and X. G. Xia, “Wavelet-based texture analysis and synthesis using hidden Markov models,” IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol.50, no.1, pp.106-120, 2003.
[20] Haralick, R. M., K. Shanmugam, and I. Dinstein, “Texture features for image classification,” IEEE Trans. Systems, Man, and Cybernetics, vol.SMC-3, no.6, pp.610-621, 1973.
[21] Huang, K. and S. Aviyente, “Information-theoretic wavelet packet subband selection for texture classification,” Signal Processing, vol.86, pp.1410-1420, 2006.
[22] Juneau, P.-M., A. Garnier, and C. Duchesne, “The undecimated wavelet transform-multivariante image analysis (UWT-MIA) for simultaneous extraction of spectral and spatial information,” Chemometrics and Intelligent Laboratory System, vol.142, pp.304-318, 2015.
[23] Kaplan, L. M., “Extended fractal analysis for texture classification and segmentation,” IEEE Trans. Image Processing, vol.8, no.11, pp.1572-1585, 1999.
[24] Kim, S. C. and T. J. Kang, “Automated defection system using wavelet packet frame and Gaussian mixture model,” Journal of Optical Society of America, vol.23, no.11, pp.2690-2701, 2006.
[25] Kim, S. C. and T. J. Kang, “Texture classification and segmentation using wavelet packet frame and Gaussian mixture model,” Pattern Recognition, vol.40, pp.1207-1221, 2007.
[26] Kim, T. H., I. K. Eom, and Y. S. Kim, “Multiscale Bayesian texture segmentation using neural networks and Markov random fields,” Neural Computing & Application, vol.18, no.2, pp.141-155, 2009.
[27] Kingsbury, N., “A dual-tree complex wavelet transform with improved orthogonality and symmetry properties,” in Proc. IEEE Conf. on Image Processing, Vancouver, Canada, Sep. 2000, pp.375-378.
[28] Krishnamachari, S. and R. Chellappa, “Multiresolution Gauss-Markov random field models for texture segmentation,” IEEE Trans. Image Processing, vol.6, no.2, pp.251-267, 1997.
[29] Lang, M., H. Guo, J. E. Odegard, C. S. Burrus, and R. O. Wells, “Noise reduction using an undecimated discrete wavelet transform,” IEEE Signal Processing Letters, vol.3, no.1, pp.10-12, Jan. 1996.
[30] Lehmann, F., “Turbo segmentation of textured images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.33, no.1, pp.16-29, Jan. 2011.
[31] Li, J., A. Najmi, and R. M. Gray, “Image classification by a two-dimensional hidden Markov model,” IEEE Trans. Signal Processing, vol.48, no.2, pp.517-533, 2000.
[32] Liu, X.-Z., B. Fang, and Z.-W. Shang, “Texture image segmentation using complex wavelet transform and hidden Markov models,” in Proc. 1st Int. Conf. Wavelet Analysis and Pattern Recognition, Baoding, China, July 12-15, 2009, pp.396-401.
[33] Matsuyama, E., D.-Y. Tsai, Y. Lee, M. Tsurumaki, N. Takahashi, H. Watanabe, and H.-M. Chen, “A modified undecimated discrete wavelet transform based approach to mammographic image denoising,” Journal Digital Imaging, vol.26, no. 4, pp.748-758, 2013.
[34] Melas, D. E. and S. P. Wilson, “Double Markov random fields and Bayesian image segmentation,” IEEE Trans. Signal Processing, vol.50, no.2, pp.357-365, Feb. 2002.
[35] Mor, E. and M. Aladjem, “Boundary refinements for wavelet-domain multiscale texture segmentation,” Image and Vision Computing, vol.23, no.13, pp.1150-1158, 2005.
[36] Muñoz, X. J. Freixenet, X. Cufí, and J. Martí, “Strategies for image segmentation combining region and boundary information,” Pattern Recognition Letters, vol.24, no.1-3, pp.375-392, 2003.
[37] Nguyen, T. M. and Q. M. J. Wu, “Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem,” IEEE Trans. Systems, Man, and Cybernetics Part B - Cybernetics, vol.42, no.1, pp.193-202, 2012.
[38] Nguyen, T. T. and S. Oraintara, “The shiftable complex directional pyramid — part I: Theoretical aspects,” IEEE Trans. Signal Processing, vol.56, no.10, pp.4651-4660, 2008.
[39] Nguyen, T. T. and S. Oraintara, “The shiftable complex directional pyramid — part II: Implementation and applications,” IEEE Trans. Signal Processing, vol.56, no.10, pp.4661-4672, 2008.
[40] Ojala, T., M. Pietikäinen, and T. Mäenpää, “Multresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.24, no.7, pp.971-987, 2002.
[41] Porter, R. and N. Canagarajah, “Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes,” IEE Proc. Vision Image Signal Processing, vol.144, no.3, pp.180-188, 1997.
[42] Pyun, K., J. Lim, C. S. Won, and R. M. Gray, “Image segmentation using hidden Markov Gauss mixture model,” IEEE Trans. Image Processing, vol.16, no.7, pp.1902-1911, July 2007.
[43] Rabiner, L. R., “A tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings of The IEEE, vol.77, no.2, pp.257-285, 1989.
[44] Romberg, J., H. Choi, R. Baraniuk, and N. G. Kingsbury, “Multiscale classification using complex wavelets and hidden Markov tree models,” in Proc. IEEE Conf. on Image Processing, Vancouver, Canada, Sept.10-13, 2000, pp.371-374.
[45] Sarkar, A., A. Banerjee, N. Banerjee, S. Brahma, B. Kartikeyan, M. Chakraborty, and K. L. Majumder, “Landcover classification in MRF context using Dempster-Shafer fusion for multisensor imagery,” IEEE Trans. Image Processing, vol.14, no.5, pp.634-645, May 2005.
[46] Selesnick, I. W., “Hilbert transform pairs of wavelet bases,” IEEE Signal Processing Letters, vol.8, no.6, pp.170-173, June 2001.
[47] Selesnick, I. W., “The design of approximate Hilbert transform,” IEEE Trans. Signal Processing, vol.50, no.5, pp.1144-1152, May 2002.
[48] Selesnick, I. W., R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree complex wavelet transform: A coherent framework for multiscale signal and image processing,” IEEE Signal Processing Magazine, vol.22, no.6, pp.123-151, Nov. 2005.
[49] Shaffrey, C. W., N. G. Kingsbury, and I. H. Jermyn, “Unsupervised image segmentation via Markov trees and complex wavelets,” in Proc. IEEE Conf. on Image Processing, Rochester, NY, Sept.22-25, 2002, pp.801-804.
[50] Shih, M. Y. and D.-C. Tseng, “Contextual hidden Markov tree model for signal denoising,” Journal of Information Science and Engineering, vol.21, pp.1261-1275, 2005.
[51] Strang, G. and Nguyen T., Wavelets and Filter Banks, Wellesley- Cambridge Press, Wellesley, MA, 1997.
[52] Sun, J., D. Gu, S. Zhang, and Y. Chen, “Hidden Markov Bayesian texture segmentation using complex wavelet transform,” IEE Proc.-Vis. Image Signal Processing, vol.151, no.3, pp.215-223, 2004.
[53] Tabassian, M., R. Ghaderi, and R. Ebrahimpour, “Knitted fabric defect classification for uncertain labels based on Dempster-Shafer theory of evidence,” Expert Systems with Applications, vol.38, pp.5259-5267, 2011.
[54] Tay, D. B. H., “Daubechies wavelets as approximate Hilbert-pairs ?” IEEE Signal Processing Letters, vol.15, pp.57-60, 2008.
[55] Trias-Sanz, R., G. Stamon, and J. Louchet, “Using color, texture, and hierarchical segmentation for high-resolution remote sensing,” ISPRS Journal of Photogrammetry & Remote Sensing, vol.63, pp.156-168, 2008.
[56] Tseng, D.-C. and M. Y. Shih, “Wavelet-based image denoising using contextual hidden Markov tree model,” Journal of Electronic Imaging, vol.14, no.3, pp.1-12, 2005.
[57] Tseng, D.-C. and R. L. Chen, “Multiscale texture segmentation using contextual hidden Markov tree models,” International Journal of Machine Learning and Computing, vol.5, no.3, pp.198-205, June 2015.
[58] Vidakovic, B., Statistical Modeling by Wavelets, John Wiley & Sons, Inc., New York, 1999.
[59] Vo, A. and S. Oraintara, “A study of relative phase in complex wavelet domain: Property, statistics and applications in texture image retrieval and segmentation,” Signal Processing: Image Communication,” vol.25, pp.28-46, 2010.
[60] Weickert, T., C. Benjaminsen, and U. Kiencke, “Analytic wavelet packets combining the dual-tree approach with wavelet packets for signal analysis and filter,” IEEE Trans. Signal Processing, vol.57, no.2, pp.493-502, February 2009.
[61] Xu, Q., J. Yang, and S. Y. Ding, “Color texture analysis using wavelet-based hidden Markov model,” Pattern Recognition Letters, vol.26, no.11, pp.1710-1719, 2005.
[62] Yang, J., Y. Wang, W. Xu, and Q. Dai, “Image and video denoising using adaptive dual-tree discrete wavelet packet,” IEEE Trans. Circuits and Systems for Video Technology, vol.19, no.5, pp.642-655, 2009.
[63] Zhang, D., Md. M. Islam, and G. Lu, “A review on automatic image annotation techniques,” Pattern Recognition, vol.45, pp.346-362, 2012.
[64] Zhang, J. and T. N. Tan, “Brief review of invariant texture analysis methods,” Pattern Recognition, vol.35, pp.735-747, 2002.
[65] Zhang, Y. H., Y. S. Zhang, Z. F. He, and X. Y. Tang, “Multiscale fusion of wavelet-domain hidden Markov tree through graph cut,” Image and Vision Computing, vol.27, pp.1402-1410, 2009.
[66] Zheng, C., Q. Qin, G. Liu, and Y. Hu, “Image segmentation based on multiresolution Markov random field with fuzzy constraint in wavelet domain,” IET Image Processing, vol.6, no. 3, pp.213-221, 2012. |