參考文獻 |
英文文獻
1. Anderson, R. E., & Srinivasan, S. S. (2003). E-satisfaction and e-loyalty: a contingency framework. Psychology and Marketing, 20(2), 123-138.
2. Adomavicius, G., & Kwon, Y.. Toward more diverse recommendations: Item re-ranking methods for recommender systems. Paper presented at the 19th Workshop on Information Technologies and Systems, 2009.
3. Adomavicius, G., & Kwon, Y. (2012). Improving aggregate recommendation diversity using ranking-based techniques. Knowledge and Data Engineering, IEEE Transactions on, 24(5), 896-911.
4. Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173.
5. Borle, S., Singh, S. S., & Jain, D. C. (2008). Customer lifetime value measurement. Management science, 54(1), 100-112.
6. Boulding, W., Kalar, A., Staelin, R., & Zeithaml, V. A. (1993). A dynamic process model of sevice quality: From expectation to behavioral intentions. Journal of Marketing Research, 30(1), 7-27.
7. Bradley, K., & Smyth, B. (2001). Improving recommendation diversity. Proceedings of the Twelfth National Conference in Artificial Intelligence and Cognitive Science (AICS-01) (pp. 75-84).
8. Brush, T. H., & Artz, K. W. (1999). Toward a contingent resource‐based theory: the impact of information asymmetry on the value of capabilities in veterinary medicine. Strategic Management Journal, 20(3), 223-250.
9. Brynjolfsson, E., Hu, Y., & Simester, D. (2011). Goodbye pareto principle, hello long tail: The effect of search costs on the concentration of product sales. Management Science, 57(8), 1373-1386.
10. Carter, M., Wright, R., Thatcher, J. B., & Klein, R. (2014). Understanding online customers’ ties to merchants: the moderating influence of trust on the relationship between switching costs and e-loyalty. European Journal of Information Systems, 23(2), 185-204.
11. Chen, Y. L., Hsu, C. L., & Chou, S. C. (2003). Constructing a multi-valued and multi-labeled decision tree. Expert Systems with Applications, 25(2), 199-209.
12. C. H. Yu. A rolling RFM-based prediction model of online repurchase behavior: A case of women’s apparel at Yahoo! Taiwan auction website. (2014).
13. C. Y. Ho, H. L. Chen, C.Y. Liao: A RFM-based forecast model of consumers’ E-marketplace repurchase behavior at Yahoo! Taiwan auction website. Journal of Data Analysis, 9(1), 1-23.
14. Ekelund, R. B., Mixon, F. G., & Ressler, R. W. (1995). Advertising and information: an empirical study of search, experience and credence goods. Journal of Economic Studies, 22(2), 33-43.
15. Fader, P. S., Hardie, B. G., & Lee, K. L. (2005). RFM and CLV: Using iso-value curves for customer base analysis. Journal of Marketing Research, 42(4), 415-430.
16. Festinger, L. A Theory of Cognitive Dissonance. Evanston, IL: Row & Peterson, 1957.
17. Fleder, D., & Hosanagar, K. (2009). Blockbuster culture′s next rise or fall: The impact of recommender systems on sales diversity. Management science, 55(5), 697-712.
18. Frederick, F. R., & Sasser, W. E. (1990). Zero defections: quality comes to services. Harvard Business Review, 68(5), 105.
19. Gupta, S., Hanssens, D., Hardie, B., Kahn, W., Kumar, V., Lin, N., Ravishanker, N & Sriram, S. (2006). Modeling customer lifetime value. Journal of Service Research, 9(2), 139-155.
20. Gupta, S., & Kim, H. W. (2007). The moderating effect of transaction experience on the decision calculus in on-line repurchase. International Journal of Electronic Commerce, 12(1), 127-158.
21. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis: a Global Perspective, Pearson. New Jersey.
22. Hernández, B., Jiménez, J., & Martín, M. J. (2010). Customer behavior in electronic commerce: The moderating effect of e-purchasing experience. Journal of Business Research, 63(9), 964-971.
23. Hogarth, R. M., & Einhorn, H. J. (1992). Order effects in belief updating: The belief-adjustment model. Cognitive psychology, 24(1), 1-55.
24. Huang, P., Lurie, N. H., & Mitra, S. (2009). Searching for experience on the web: an empirical examination of consumer behavior for search and experience goods. Journal of Marketing, 73(2), 55-69.
25. Hughes, A. M. (2001). Strategic Database Marketing: The masterplan for starting and managinga profitable, customer-based marketing program. McGraw-Hill.
26. Kalakota, R., & Robinson, M. (2001). E-business 2.0: Roadmap for Success. Addison-Wesley Professional.
27. Kamakura, W. A., Wedel, M., De Rosa, F., & Mazzon, J. A. (2003). Cross-selling through database marketing: a mixed data factor analyzer for data augmentation and prediction. International Journal of Research in marketing, 20(1), 45-65.
28. Kim, M. S., & Ahn, J. H. (2007). Management of trust in the e-marketplace: the role of the buyer′s experience in building trust. Journal of Information Technology, 22(2), 119-132.
29. Koo, D. M. (2006). The fundamental reasons of e-consumers’ loyalty to an online store. Electronic Commerce Research and Applications, 5(2), 117-130.
30. Korgaonkar, P., Silverblatt, R., & Girard, T. (2006). Online retailing, product classifications, and consumer preferences. Internet Research, 16(3), 267-288.
31. Kotler, P., Keller, K. L., Ancarani, F., & Costabile, M. (2014). Marketing management 14/e. Pearson.
32. Kumar, V., Venkatesan, R., Bohling, T., & Beckmann, D. (2008). Practice prize report-The power of CLV: Managing customer lifetime value at IBM. Marketing Science, 27(4), 585-599.
33. Kwon, W. S., & Lennon, S. J. (2009). What induces online loyalty? Online versus offline brand images. Journal of Business Research, 62(5), 557-564.
34. Lee, S., Lee, S., & Park, Y. (2007). A prediction model for success of services in e-commerce using decision tree: E-customer’s attitude towards online service. Expert Systems with Applications, 33(3), 572-581.
35. Ling, K. C., Chai, L. T., & Piew, T. H. (2010). The effects of shopping orientations, online trust and prior online purchase experience toward customers’ online purchase intention. International Business Research, 3(3), p63.
36. Liao, C., Liu, C. C., & Chen, K. (2011). Examining the impact of privacy, trust and risk perceptions beyond monetary transactions: An integrated model. Electronic Commerce Research and Applications, 10(6), 702-715.
37. Liu, R. Y., Yang, L., Wei, K. K., & Chen, H. (2009). Consumers′ repurchase probability in online marketplace: A belief updating perspective. AMCIS 2009 Proceedings, 483.
38. Luo, J., Ba, S., & Zhang, H. (2012). The Effectiveness of Online Shopping Characteristics and Well-Designed Websites on Satisfaction. Mis Quarterly,36(4), 1131-1144.
39. Manning, H.; Bodine, K.; Temkin, B.D.; and Amato, M. Best and worst of site design. Forrester Research, Cambridge, MA (March 2005)(www.forrester.com/Research/Document/Excerpt/0,7211,36074,00.html).
40. McNee, S. M., Riedl, J., & Konstan, J. A. (2006, April). Being accurate is not enough: how accuracy metrics have hurt recommender systems. CHI′06 extended abstracts on Human factors in computing systems (pp. 1097-1101). ACM.
41. Mittal, V., & Kamakura, W. A. (2001). Satisfaction, repurchase intent, and repurchase behavior: Investigating the moderating effect of customer characteristics. Journal of Marketing Research, 38(1), 131-142.
42. Oliver, R. L. (1999). Whence consumer loyalty? The Journal of Marketing, 33-44.
43. Park, C., & Lee, T. M. (2009). Information direction, website reputation and eWOM effect: A moderating role of product type. Journal of Business research,62(1), 61-67.
44. Park, S. H., & Han, S. P. (2013). From accuracy to diversity in product recommendations: Relationship between diversity and customer retention. International Journal of Electronic Commerce, 18(2), 51-72.
45. Pathak, B., Garfinkel, R., Gopal, R. D., Venkatesan, R., & Yin, F. (2010). Empirical analysis of the impact of recommender systems on sales. Journal of Management Information Systems, 27(2), 159-188.
46. Paul, P., Pennell, M. L., & Lemeshow, S. (2013). Standardizing the power of the Hosmer–Lemeshow goodness of fit test in large data sets. Statistics in medicine, 32(1), 67-80.
47. Sohrabi, B., & Khanlari, A. (2007). Customer lifetime value (CLV) measurement based on RFM model. Iranian Accounting & Auditing Review, 14(47), 7-20.
48. Su, K. W., Wang, J. W., & Hsu, M. H. (2012). The impact of prior experience on shopping behaviors. Journal of the Chinese Institute of Industrial Engineers,29(6), 400-416.
49. Swan, J. E., & Nolan, J. J. (1985). Gaining customer trust: a conceptual guide for the salesperson. Journal of Personal Selling & Sales Management, 5(2), 39-48.
50. Wang, J. W., & Wu, H. L. (2011, July). Understanding Repeat Purchase Intentions And Uncertainty In The Context Of Online Shopping. PACIS (p. 207).
51. Weathers, D., Sharma, S., & Wood, S. L. (2007). Effects of online communication practices on consumer perceptions of performance uncertainty for search and experience goods. Journal of Retailing, 83(4), 393-401.
52. Zhang, Y., Fang, Y., Wei, K. K., Ramsey, E., McCole, P., & Chen, H. (2011). Repurchase intention in B2C e-commerce—A relationship quality perspective. Information & Management, 48(6), 192-200.
中文文獻
1. 資策會 (2013),台灣網友網路購物行為調查,資策會(MIC)AISP情報顧問服務資料庫。
2. 資策會 (2014),台灣網友網路購物行為調查,資策會(MIC)AISP情報顧問服務資料庫。
3. 資策會 (2014),2013網路商店經營現況,資策會(MIC)AISP情報顧問服務資料庫。
4. 資策會 (2014),電子商務市場與下世代應用趨勢前瞻,資策會(MIC)AISP情報顧問服務資料庫。
5. 資策會 (2014),電子商務雲端創新應用與基礎環境建置計畫。
6. 資策會 (2015),電子商務產業回顧與展望,資策會(MIC)AISP情報顧問服務資料庫。
7. 何靖遠, 陳慧玲, & 廖致淵. (2014). 線上消費者平台再購行為的 RFM 預測模型-以 Yahoo! 奇摩拍賣女裝為例. Journal of Data Analysis, 9(1), 1-23.
8. EagleEye鷹眼數據 (2014),2014年第四季台灣購物網站排行榜。
9. 財團法人台灣網路資訊中心 (2014),2014年台灣網寬頻網路使用調查報告,取自http://www.twnic.net.tw/download/200307/20140820e.pdf。 |