參考文獻 |
中文部分
[1] 黃嘉偉, 「以文句網路分群架構萃取多文件摘要」. 國立中央大學,碩士論文,民國103年.
[2] 吳登翔, 「使用者模型為基礎的概念念飄移預測」. 國立中央大學,碩士論文,民國103年.
[3] 李浩平, 「運用NGD建立適用於使用者回饋資訊不足之文件過濾系統」. 國立中央大學,碩士論文,民國 100 年.
[4] 楊佩臻, 「利用文句關係網路自動萃取文件摘要之研究」. 國立中央大學, 碩士論文,民國 102 年。.
英文部分
[5] L. Kaufman and P. J. Rousseeuw, “Clustering by means of medoids,” Stat. Data Anal. Based L 1-Norm Relat. Methods. First Int. Conf., pp. 405–416416, 1987.
[6] “Google 快訊.” [Online]. Available: https://www.google.com/alerts.
[7] C. Aggarwal and C. Zhai, Mining text data, vol. 4, no. 2(63). Springer New York Dordrecht Heidelberg London, 2012.
[8] I. MANI, G. KLEIN, D. HOUSE, L. HIRSCHMAN, T. FIRMIN, and B. SUNDHEIM, “SUMMAC: a text summarization evaluation,” Natural Language Engineering, vol. 8, no. 01. 2002.
[9] A. Tombros and M. Sanderson, “Advantages of query biased summaries in information retrieval,” Proc. 1998 21st Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 2–10, 1998.
[10] L. L. Bando, F. Scholer, and A. Turpin, “Constructing Query-biased Summaries : a Comparison of Human and System Generated Snippets,” Proc. third Symp. Inf. Interact. Context, pp. 195–204, 2010.
[11] L. Antiqueira, O. Oliveirajr, L. Costa, and M. Nunes, “A complex network approach to text summarization,” Inf. Sci. (Ny)., vol. 179, no. 5, pp. 584–599, Feb. 2009.
[12] D. R. Radev, E. Hovy, and K. McKeown, “Introduction to the special issue on summarization,” Comput. Linguist., vol. 28, no. 4, pp. 399–408, 2002.
[13] M. Girvan and M. E. J. Newman, “Community structure in social and biological networks.,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 12, pp. 7821–7826, 2002.
[14] E. Canhasi and I. Kononenko, “Weighted archetypal analysis of the multi-element graph for query-focused multi-document summarization,” Expert Syst. Appl., vol. 41, no. 2, pp. 535–543, 2014.
[15] Z. Zhang, S. S. Ge, and H. He, “Mutual-reinforcement document summarization using embedded graph based sentence clustering for storytelling,” Inf. Process. Manag., vol. 48, no. 4, pp. 767–778, Jul. 2012.
[16] X. Cai and W. Li, “A spectral analysis approach to document summarization: Clustering and ranking sentences simultaneously,” Inf. Sci. (Ny)., vol. 181, no. 18, pp. 3816–3827, Sep. 2011.
[17] G. Erkan and D. Radev, “LexRank: Graph-based lexical centrality as salience in text summarization,” J. Artif. Intell. Res.(JAIR), vol. 22, pp. 457–479, 2004.
[18] D. M. Dunlavy, D. P. O’Leary, J. M. Conroy, and J. D. Schlesinger, “QCS: A system for querying, clustering and summarizing documents,” Inf. Process. Manag., vol. 43, no. 6, pp. 1588–1605, 2007.
[19] G. Yang, D. Wen, Kinshuk, N.-S. Chen, and E. Sutinen, A novel contextual topic model for multi-document summarization, vol. 42, no. 3. Elsevier Ltd, 2015.
[20] M. Mendoza, S. Bonilla, and C. Noguera, “Extractive single-document summarization based on genetic operators and guided local search,” Expert Syst. with …, vol. 41, no. 9, pp. 4158–4169, Jul. 2014.
[21] C. Aggarwal and S. Philip, “A Framework for Clustering Massive Text and Categorical Data Streams.,” Sdm, pp. 479–483, 2006.
[22] K. Sugiyama, K. Hatano, and M. Yoshikawa, “Adaptive web search based on user profile constructed without any effort from users,” in WWW ’04: Proceedings of the 13th international conference on World Wide Web, 2004, pp. 675–684.
[23] R. L. Cilibrasi and P. M. B. Vitányi, “The Google similarity distance,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 3, pp. 370–383, 2007.
[24] P. I. Chen and S. J. Lin, “Word AdHoc Network: Using Google Core Distance to extract the most relevant information,” Knowledge-Based Syst., vol. 24, no. 3, pp. 393–405, 2011.
[25] J. Neto, A. Santos, and C. Kaestner, “Document clustering and text summarization,” Proc. 4th Int. Conf., 2000.
[26] D. Davis, M., Joann, D. K., and Marion, “Scientific Papers and Presentations: Navigating Scientific Communication in Today’s world. Academic Press.,” 2012.
[27] C. Lopez, V. Prince, and M. Roche, “How can catchy titles be generated without loss of informativeness?,” Expert Syst. Appl., vol. 41, no. 4 PART 1, pp. 1051–1062, 2014.
[28] G. Salton and M. J. McGill, “Introduction to modern information retrieval.,” Introd. to Mod. Inf. Retr., 1983.
[29] C. Biemann, Structure Discovery in Natural Language. Springer Heidelberg Dordrecht London New York.
[30] A. Huang, “Similarity measures for text document clustering,” Proc. Sixth New Zeal., no. April, pp. 49–56, 2008.
[31] K. Hagiwara, M., Ogawa, Y., and Toyama, “Effective Use of Indirect Dependency for Distributional Similarity,” Inf. Media Tehnol., no. 3(4), pp. 864–887, 2008.
[32] H. Shimizu, N., Hagiwara, M., Ogawa, Y., Toyama, K., and Nakagawa, “Metric Learning for Synonym Acquisition,” 2008, pp. pp. 793–800.
[33] S. Gu, Y. Tan, and X. He, “Recentness biased learning for time series forecasting,” in Information Sciences, 2013, vol. 237, pp. 29–38.
[34] L. Li, L. Zheng, F. Yang, and T. Li, “Modeling and broadening temporal user interest in personalized news recommendation,” Expert Syst. Appl., vol. 41, no. 7, pp. 3168–3177, 2014.
[35] R. Angheluta, R. De Busser, and M. Moens, “The Use of Topic Segmentation for Automatic Summarization,” in Proceedings of the ACL-2002 Workshop on Automatic Summarization, 2002.
[36] N. Labroche, “Online fuzzy medoid based clustering algorithms,” Neurocomputing, vol. 126, pp. 141–150, 2014.
|