參考文獻 |
[1] N. Savage, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug., 2002.
[2] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64Gb/s Transmission over 57m MMF using an NRZ Modulated 850nm VCSEL,” Proc. OFC 2014, San Francisco, CA, USA , pp. Th3C. 2, March, 2014.
[3] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link,” IEEE Photon. Technol. Lett., vol. 27, no. 6, pp. 577-580, March, 2015.
[4] S. Kandou, “Progress and Challenges for Next Generation 400G Electrical Links,” OIF Workshop, San Jose, CA, USA, February, 2014.
[5] S. Nakagawa, D. Kuchta, C. Schow, R John, A .Larry .Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC, San Diego, CA, pp. OThS3, Feb., 2008.
[6] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sep., 1990.
[7] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting laser,” Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1418, pp. 414-421, Nov., 1991.
[8] Y. J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, “Low threshold operation of a GaAs single quantum well mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, no. 16, pp. 1780-1782, Apr., 1991.
[9] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures,” J. Appl. Phys., vol. 73, pp. 3769-3781, April, 1993.
[10] J. A. Van Vechten, “Intermixing of an AlAs-GaAs superlattice by Zn Diffusion ,” J. Appl. Phys. vol. 55, no. 10, pp.7082-7084, Oct., 1984.
[11] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion, ” Appl. Phys. Lett., vol. 38, no. 10, pp. 776-778 , May, 1981.
[12] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice,” Semicond. Sci. Tech., no. 4, pp. 841-846, 1989.
[13]陳志誠,“穩態單橫模和穩定極化的面射型雷射,” 國立台灣大學電機工程 學系博士論文, 民國90年.
[14] R. G. Hunsperger, “Integrated Optics: Theory and Technology”, IEEE J. Quantum Electron., vol. QE-19., no. 4, April, 1983.
[15] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, “Diffusion of zinc into Ga1-xAlx As ,” Appl. Phys. Lett., vol 47, no. 11, pp.1193-1195, 1985.
[16] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[17] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., vol. 36, no.12, pp. 3770-3778, Dec., 1965.
[18] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures,” J. Appl. Phys., vol. 72, Issue 11, pp. 5213-5219, Dec., 1992.
[19] K. D. Choquette, K. M. Geib, I. H. Carol, Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Top. Quant. Electron, vol. 3, no. 3, pp. 916-926, June, 1997.
[20] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Tech. Lett., vol. 7, no. 11, pp.1237-1239, Nov., 1995.
[21] N. Hplonyak, Jr., and J. M. Dallesasse, “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs ,” Appl. Phys. Lett, vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[22] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, pp.1935-1937, June,1996.
[23] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 8, no.6 pp.740-742, June, 1996.
[24] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, pp.1723-1725, Jan., 1995.
[25] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib, “Cavity characteristics of selectively oxidized vertical-cavity lasers,” Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[26] W. W. Chow, K. D. Choquette, H. Mary. Crawford, L. Lear. Kevin, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, 1997.
[27] 江嘉偉“應用在光連結高可靠度高速(>25Gbit/sec)850光波段的垂直共振腔雷射” 國立中央大學電機工程學系碩士論文, 民國103年.
[28] M. Grabherr, S. Intemann, S. Wabra, P. Gerlach, M. Riedl, R. King “25 Gbps and beyond: VCSEL development at Philips,” Proc. SPIE, vol. 8639, pp. 86390J-2, February, 2013.
[29] J. Guenter, B. Hawkins, R. Hawthorne, G. Landry, “Reliability of VCSELs for >25 Gb/s,” Proc. OFC 2014, San Francisco, CA, USA, pp. M3G.2, March, 2014.
[30] S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, and A. Haglund, A. Larsson, and A. Joel, “Active Region Design for High-Speed 850-nm VCSELs,” IEEE J. Quantum Electron., vol. 46, pp. 506-512, April, 2010.
[31] H. Nishimoto, M. Yamaguchi, I. Mito, and K. Kobayashi “High-Frequency Response for DFB LD due to a Wavelength Detuning Effect,” IEEE/OSA Journal of Lightwave Technology, vol. LT-5, no. 10, pp. 1399-1402 , Oct., 1987.
[32] H. L. Member, C. Blaauw, and Toshihiko Makino, Member, “Single-Mode Operation Over a Wide Temperature Range in 1.3 pm InGaAsP/InP Distributed Feedback Lasers,” Journal of Lightwave Technology, vol. 14, no. 5, May, 1996.
[33] M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 312-320, March/April, 2004.
[34] K. Doi , T. Shindo, M. Futami, T. Amemiya, N. Nishiyamal, and S. Arail, “Thermal Analysis of Self-heating Effect in GaInAsP/InP Membrane DFB Laser on Si Substrate,” IEEE Photonic Society Meeting 2012, San Francisco, CA, USA, Sep., 2012.
[35] Hui Li, Philip Wolf, Philip Moser, Student Member, Gunter Larisch, Alex Mutig, A. Lott, Senior Member, and Dieter H. Bimberg, “Impact of the Quantum Well Gain-to-Cavity Etalon Wavelength Offset on the High Temperature Performance of High Bit Rate 980-nm VCSELs,” IEEE J. Quantum, Electron., vol. 50, no. 8, pp. 613-621, August, 2014.
[36] J.-W. Shi, C. -C. Chen, Y .-S. Wu , S.- H. Guol, Chihping Kuo, and Ying-Jay Yang,“High-Power and High-Speed Zn-Diffusion Single Fundamental -Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photonic. Tech .Lett., vol. 20, no. 13, pp. 1121-1123, 2008.
[37] W. W. Chow, K. D. Choquette, H. Mary. Crawford, L. Lear. Kevin, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, 1997.
[38] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, High speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, 2007.
[39] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50 Gb/s NRZ Modulated 850 nm VCSEL Transmitter Operating Error Free to 90 °C,” Journal of Lightwave Technology., vol. 33, no. 4, Feb., 2014. |