以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:52 、訪客IP:18.118.162.8
姓名 黃昭仁(ZHAO-REN,HUANG) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 雙向具可調式輸出電壓直流-直流 LC諧振切換電容式轉換器
(Bi-Directional Switching-Capacitor based on DC to DC Resonance Converter with Adjustable Output Voltage)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本篇論文提出一個雙向諧振切換式電容直流-直流轉換器,改善了最初充電電荷泵浦無法穩壓以及無法調整輸出電壓的缺點,在電路中加入了諧振電感,優化了最小Block的轉化效率,使整體效率達到90%以上,在輸出部份加入電感,使電路可以在n倍壓與n+1倍壓間調整,輸出電壓可根據負載需求做自由調整。
本論文實驗電路為兩組切換式電容電路,順向升壓時可以透過一個固定的輸入電壓源來做多組輸出,加入輸出電感,輸出電壓增益範圍約在 2.2倍壓至 2.8 倍壓之間做調整,若移除輸出電感,輸出電壓增益可達到3倍壓;逆向降壓時則可以透過3個電容將輸入電壓由 2/3倍至 1/3 倍做降壓。電路的主體以充電電荷泵浦(Charge Pump)為基礎,結合切換電容式轉換器(Switching Capacitor Converter)架構來作為此論文的主電路,利用輸出電感之設計變化,可以藉由讓電感工作在連續導通區間(CCM)與不連續導通區間(DCM)來調整順向輸出電壓。輸出電壓調整可以藉由改變上臂開關之責任週期 D(Duty Cycle)來讓輸出達到 2+D 倍的效果。本文設計之轉換器與羅轉換器(Luo Converter)相比,不僅降低元件數還提升了輸出之可調性;與傳統 2+D 倍轉換器相比,傳統架構調整頻率(Frequency)所得到電壓調幅是狹隘的 。 若改為調整責任週期,可讓電壓轉換做大幅調整也因為如此效率也大大提升。
摘要(英) This study proposed a Bi-Directional Switching-Capacitor based on DC to DC Resonance Converter with Adjustable Output Voltage. Improve the shortcomings of the initial electric charge pump can’t be regulated and the inability to adjust the output voltage. In the circuit, we added the resonant inductor to optimizing the conversion efficiency of the smallest Block, and the overall efficiency of over 90%. We developed 2 switched capacitors capable of multiple outputs ranging from 2.2 to 3 times the input voltage based on a fixed input voltage source during forward boost with output ranging from about 1/2 to 1/3 times the input voltage during reverse buck. The main part of the circuit is based on a charge pump, combining the structure of a switched-capacitor DC/DC converter as our main circuit. The inductor at the output terminal was designed to work between continuous conduction mode (CCM) and discontinuous conduction mode (DCM) to enable the adjustment of forward output voltage. Output voltage can be altered by modifying the duty cycle (D) of the upper-arm MOS switch, thereby enabling the output to reach 2 + D voltages. 關鍵字(中) ★ 充電電荷泵浦
★ 倍壓
★ LC諧振
★ 切換式電容關鍵字(英) ★ Charge Pump
★ Bidirectional
★ DC-DC Converter
★ LC resonance論文目次 目錄
摘要 vii
Abstract viii
誌謝 ix
目錄 x
圖目錄 xii
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
1-3論文架構 2
第二章 切換式電容升壓電路發展 3
2-1充電電荷泵浦發展技術背景 3
2-2LC諧振切換式電容升壓電路優勢與應用面 11
2-3雙向切換式電容升壓電路與發展 12
2-4電路元件 15
2-4-1 金屬化聚酯膜電容(MEF) 15
2-4-2 電感類型 16
2.5 LC諧振原理介紹 19
第三章 電路設計 21
3-1電路主架構分析 21
3-2切換時序圖 23
3-2-1 順向(Forward)切換時序圖 26
3-2-2 逆向(Reverse)切換時序圖 31
3.3電壓增益推導 33
3-4電容設計與輸出連波電壓計算 36
3.5電感值設計輸出漣波電流計算 38
3-5-1輸出調節電感 38
3-5-2連續(CCM)與不連續(DCM)導通之邊界 40
第四章 模擬分析與實作Equation 42
4-1 PSIM 模擬電路之波形 42
4-1-1順向電路介紹 43
4-1-2諧振電路介紹 43
4-1-3逆向電路介紹 44
4-2 電路實作 45
4-2-1控制電路板 45
4-2-2諧振式切換電容式電路板 52
4-2-3電路元件 55
4-2-4波型與轉換效率 55
4-2-3回授控制 59
第五章 結論與未來展望 63
5-1 結論 63
5-2 未來展望 64
參考文獻 65
參考文獻 參考文獻
[1]A.K.P Viraj and G.A.J Amaratunga, “A Monolithic CMOS 5V/1V Switched Capacitor DC-DC Step-down Converter,” IEEE PESC, pp. 2510-2514, June 2007.
[2]Y.W. Lu, G. Feng, Y.F. Liu, “A Large Signal Dynamic Model for DC-to-DC Converters with Average Current Control,” IEEE APEC ‘04, vol. 2, pp. 797-803.
[3]L. Pylarinos, “Charge pumps: an overview,” University of Toronto, T utorial Papers on Analog Circuits, 2002.
[4]J.F. Dickson, “On-chip High-Voltage Generation in NMOS Integrated Circuits Using an Improved Voltage Multiplier Technique,” IEEE Journal of Solid-State Circuits, Vol. 11, No. 6, pp. 374-378, 1976.
[5]J.T. Wu and K.L. Chang, “MOS charge pumps for low-voltage operation,” IEEE Journal of Solid-State Circuits, Vol. 33, pp. 592-597, 1998.
[6]M.S. Makowski, “Realizability conditions and bounds on synthesis of switched-capacitor DC-DC voltage multiplier circuits,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 44, pp. 684-691, 1997.
[7]J.A. Starzyk, Y. W. Jan and F. Qui,“A DC-DC charge pump design based on voltage doublers,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 48, pp. 350-359, 2001.
[8]B.Kormann and J. Pelfrey, “Simple design of an ultra-low-ripple dc/dc boost converter with TPS60100 charge pump,” Journal of Analog Applications, Texas Instruments Literature, No. SLYT015, pp. 15-18, 2000.
[9]B.Kormann and J. Pelfrey, “High-efficiency, regulated charge pumps for high-current applications,” Texas Instruments Power Supply Design Seminars, 2001.
[10]C.C. Wang and J.C. Wu, “Efficiency improvement in charge pump circuits,” 80 IEEE Journal of Solid-State Circuits, Vol. 32, pp. 852-860, 1997.
[11]W.H. Ki, F. Su and C.Y. Tsui, “Charge redistribution loss consideration in optimal charge pump design,” in proceedings of the IEEE International Symposium of Circuits and Systems, Vol. 2, pp. 1895-1898, 2005.
[12]A. Saiz-Vela, P. Miribel-Catala, J. Colomer, M. Puig-Vidal and J. Samitier, Accurate design of Two-Phase Voltage Doublers based on a compact mathematical model,” in proceedings of the IEEE International Symposium of Circuits and Systems, pp. 213-216, 2007.
[13]L. Shir-Kuan, "Design and Implementation of Boost Charge Pump Circuit of Energy Harvesting System,"NCTU MS., Thesis, 2009.
[14]B.Robert Gregoire, “A Compact Switched-Capacitor Regulated Charge Pump Power Supply,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1944-1953, Aug. 2006.
[15]J.-J. Huang,“Implementation of Series Equalization by Switching Capacitor for Hybrid Battery System"NCU MS., Thesis, 2011.
[16]Zahra Amjadi, “Digital Control of a Bidirectional DC/DC Switched Capacitor Converter for Hybrid Electric Vehicle Energy Storage System Applications” IEEE Transactions On Smart Grid, 2013
[17]Zhigang Liang, “High efficiency switched capacitor buck-boost converter for PV application” Applied Power Electronics Conference and Exposition (APEC), 2012
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2015-7-28 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare