以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:91 、訪客IP:18.227.46.74
姓名 呂岳樺(Yue-hua Lu) 查詢紙本館藏 畢業系所 數學系 論文名稱
(Numerical ranges and numerical radii for tensor products of matrices)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在這篇論文中,我們主要討論具備怎樣性質的n×n矩陣A與m×m矩陣B能讓這個等式"w(Aotimes B)=" ‖A‖w(B)成立,其中w(∙)及‖∙‖分別代表一個矩陣的數值半徑(numerical radius)及範數(norm)。我們證明了以下結果:(1)假如A是一個S_n矩陣,則"w(AotimesB)=" w(B)的充分必要條件是B的數值域(numerical range)是個圓心在原點的圓盤並且k_B≤n,其中k_B這個參數指的是在B的壓縮矩陣中數值域與B相同,這種壓縮矩陣尺寸的最小值;以及(2)若A是個範數為1的completely nonunitary矩陣,而m×m矩陣B滿足k_B=m,則"w(Aotimes B)=" w(B)的充分必要條件是B的數值域是個圓心在原點的圓盤並且k_B≤p_A+1,其中p_A這個參數指的是讓‖A^k ‖=‖A‖^k成立,所有k的最大值。在上述的情況下,我們都得到"Aotimes B" 的數值域與B的數值域相同。接下來,我們也對友矩陣(companion matrix)作一些討論,我們證明:若A是一個n×n的友矩陣,則"W(Aotimes A)" 是個圓心在原點的圓盤的充分必要條件是A是一個n×n的Jordan block J_n. 摘要(英) In this thesis, we characterize matrices A in M_n and B in M_m which yield the equality w(Aotimes B)=|A|w(B), where w(.) and |.| denote, respectively, the numerical radius and the operator norm of a matrix. We show that (1) if A is an Sn-matrix, then w(Aotimes B)=w(B) if and only if the numerical range W(B) of B is a circular disc
centered at the origin and k_Bleq n, where
k_B=min{k:W(V*BV)=W(B) for some V in M_mk with V*V=I_k};
and (2) if A is completely nonunitary with |A|=1 and k_B =m, then w(Aotimes B)=w(B) if and only if W(B) is a circular disc centered at the origin and k_Bleq pA+1,
where p_A=sup{k:|A|^k=|A^k|}
In the above cases, we all have W(Aotimes B)=W(B). Next, we consider the class
of companion matrices. We prove that if A is an n-by-n companion matrix, then
W(Aotimes A) is a circular disc centered at the origin if and only if A is equal to the
n-by-n Jordan block J_n.關鍵字(中) ★ 數值域
★ 數值半徑
★ 張量積
★ S_n矩陣
★ 收縮
★ 友矩陣關鍵字(英) ★ numerical range
★ numerical radius
★ tensor product
★ S_n-matrix
★ contraction
★ companion matrix論文目次 1 Introduction and Preliminaries..........................1
1.1 Numerical ranges and numerical radii..................1
1.2 Sn-matrices...........................................4
1.3 Tensor product........................................7
2 Numerical radii and numerical ranges for tensor products of matrices..............................................13
2.1 Sn-matrices..........................................13
2.2 Contractions.........................................21
3 Companion Matrices.....................................33
3.1 Introduction.........................................33
3.2 Tensor Products of Companion Matrices................36
Bibliography.............................................51參考文獻 [1] M. D. Choi, C.K. Li, Constrained unitary dilations and numerical ranges, J.Operator Theory 46 (2001), pp. 435-447.
[2] H.-L. Gau, Numerical ranges of reducible companion matrices, Linear Algebra Appl. 432 (2010), pp. 1310-1321.
[3] H.-L. Gau and P. Y. Wu, Numerical range of S(phi), Linear Multilinear Algebra 45 (1998), pp. 49-73.
[4] H.-L. Gau, P. Y. Wu., Lucas′ theorem refined, Linear Multilinear Algebra, 45 (1999), pp. 359-373.
[5] H.-L. Gau and P. Y. Wu, Condition for the numerical range to contain an elliptic disc, Linear Algebra Appl. 364 (2003), pp. 213-222.
[6] H.-L. Gau and P. Y. Wu, Finite Blaschke products of contractions, Linear Algebra Appl. 368 (2003), pp. 359-370.
[7] H.-L. Gau, P. Y. Wu, Numerical range circumscribed by two polygons, Linear Algebra Appl. 382 (2004), pp. 155-170.
[8] H.-L. Gau and P. Y. Wu, Companion matrices: reducibility, numerical ranges and similarity to contractions, Linear Algebra Appl. 383 (2004), pp. 127-142.
[9] H.-L. Gau and P. Y. Wu, Numerical ranges of companion matrices, Linear Algebra Appl. 421 (2007), pp. 202-218.
[10] H.-L. Gau and P. Y. Wu, Structures and numerical ranges of power partial isometries, Linear Algebra Appl. 440 (2014), pp. 325-341.
[11] H.-L. Gau, C.K. Li, and P. Y. Wu, Higher-rank numerical ranges and dilations, J. Operator Theory 63:1 (2010), pp. 181-189.
[12] H.-L. Gau, K.-Z. Wang and P. Y. Wu., Numerical radii for tensor products of operators, Integral Equations and Operator Theorey, 78 (2014), pp. 375-382.
[13] H.-L. Gau, K.-Z. Wang and P. Y. Wu., Numerical radii for tensor products of matrices, Linear Multilinear Algebra, (2014), to appear.
http://dx.doi.org/10.1080/03081087.2013.839669
[14] K. Gustafson and D. K. M. Rao, Numerical Range. The Field of Values of Linear
Operators and Matrices, Springer, New York, 1997.
[15] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
[16] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University
Press, Cambridge, 1991.
[17] R. Kippenhahn, Uber den Wertevorrat einer Matrix, Math. Nachr., 6 (1951), pp. 193-228.
[18] P. Y. Wu, Unitary dilations and numerical ranges, J. Operator Theory 38 (1997), pp. 25-42.
[19] P. Y. Wu, Numerical ranges as circular discs, Applied Math. Lett. 24 (2011), pp. 2115-2117.
[20] P. Y. Wu, H.-L. Gau and M.-C. Tsai, Numerical radius inequality for C_0 contractions, Linear Algebra Appl. 430 (2009), pp. 1509-1516.指導教授 高華隆(Hwa-Long Gau) 審核日期 2015-7-7 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare