參考文獻 |
[1] M. Vertregt, “The analog challenge of nanometer CMOS,” Int’l Electron Devices Meeting, pp.1-8, Dec. 2006
[2] Fettweis, “Wave digital filters: Theory and practice,” Proceedings of the IEEE, vol. 74, no. 2, pp. 270–327, 1986.
[3] K. Meerkotter and R. Scholz, “Digital simulation of nonlinear circuits by wave digital filter principles,” IEEE Int’l Symp. on Circuits and Systems, pp. 720–723, 1989.
[4] H. Kutuk and S.-M. Kang, “A field-programmable analog array (FPAA) using switched-capacitor techniques,” in Proc. IEEE Int’l Symp. on Circuits and Systems, vol. 4, 1996, pp. 41-44, 1996.
[5] E. K. Lee and W. L. Hui, “A novel switched-capacitor based field-programmable analog array architecture,” in Field-Programmable Analog Arrays, Springer, pp. 33-50, 1998.
[6] E. K. Lee and P. G. Gulak, “A transconductor-based field-programmable analog array,” in Proc. IEEE Int’l Solid-State Circuits Conf., pp. 198-199, 1995.
[7] B. Pankiewicz, M. Wojcikowski, S. Szczepanski, and Y. Sun, “A field programmable analog array for CMOS continuous-time OTA-C filter applications,” IEEE J. Solid-State Circuits, vol. 37, no. 2, pp. 125-136, 2002.
[8] T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Anderson, “Large-scale field-programmable analog arrays for analog signal processing,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 52, no. 11, pp. 2298-2307, 2005.
[9] J. Suh, N. Suda, C. Xu, N. Hakim, Y. Cao, B. Bakkaloglu, “Programmable ANalog Device Array (PANDA): A methodology for transistor-Level analog emulation,” IEEE Trans. on Circuits and Systems I: Regular Papers , vol. 60, no. 6, pp. 1369-1380, Jun. 2013.
[10] R. Zheng, J. Suh, C. Xu, N. Hakim, B. Bakkaloglu, and Y. Cao, “Programmable analog device array (PANDA): a platform for transistor-level analog reconfigurability,” in Proc. IEEE Design Automation Conf., pp. 322-327, 2011.
[11] N. Kapre, A. DeHon, “SPICE2: Spatial processors interconnected for concurrent execution for accelerating the SPICE circuit simulator using an FPGA,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 1, pp. 9-22, Jan. 2012.
[12] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.
[13] J. G. Proakis and D. K. Manolakis, Digital Signal Processing – Principles, Algorithms, and Applications, 4rd ed. New Jersey, USA: Pearson Prentice Press, 2007.
[14] K. Neerkotter and R. Scholz, “Digital simulation of nonlinear circuits by wave digital filter principles,” in Proc. IEEE Int. Symp. Circuits and System, vol.1, May 1989, pp. 720-723.
[15] G. De Sanctis and A. Sarti, “Virtual analog modeling in the wave-digital domain,” IEEE Trans. on Audio, Speech, and Language Processing, vol. 18, no. 4, pp. 715-727, May 2010.
[16] A. Sarti and G. D. Poli, “Toward Nonlinear Wave Digital Filters,” IEEE Trans. on Signal Processing, vol. 47, no. 6, pp. 1654-1668, 1999.
[17] S. Petrausch and R. Rabenstein, “Wave digital filters with multiple nonlinearities,” in Proc. European Signal Processing Conference, 2004.
[18] B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, “Bsim: Berkeley short-Channel IGFET model for MOS transistors,” IEEE J. Solid-State Circuits, vol. 22, no. 4, pp. 558–566, 1987.
[19] T. Shima, T. Sugawara, S. Moriyama, and H. Yamada, “Three-dimensional table look-up MOSFET model for precise circuit simulation,” IEEE J. Solid-State Circuits, vol. 17, no. 3, pp. 449-454, 1982.
[20] S.A Dyer, J.S Dyer, “Cubic-spline interpolation. 1” IEEE Instrumentation & Measurement Magazine, vol. 4, no. 1, pp. 44-46
[21] S. Khotpanya, S. Kittiratsatcha, I. Kazuhisa, “A magnetic model of a three-phase switched-reluctance machine using cubic spline interpolation technique” Power Electronics and Drives Systems, vol. 2, pp. 1167-1170
[22] T. Schwerdtfeger and A. Kummert, “A Multidimensional signal processing Approach to Wave Digital ‘Filters With Topology-Related Delay-Free Loops”, in Proc. IEEE Int’l Conf. on Acoustic, Speech and Signal Processing, 2014.
|