參考文獻 |
[1] J. W. Goodman, Introduction to Fourier Optics, 2nd eds. (McGraw-Hill, New
York, 2002).
[2] G. W. Burr, “Holographic storage,” Encyclopedia of Optical Engineering,
ed., R. B. Johnson and R. G. Driggers, Marcel Dekker, New York, 2003.
[3] J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A.
Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and
G. T. Sincerbox,“Holographic data storage,” IBM journal of research and
development, 44, 2000.
[4] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage,
(Springer, New York, 2000).
[5] D. Psaltis and F. Mok, “Holographic memories,” Scientic American, 70-76
(1995).
[6] J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in
electrooptic crystals,” Appl. Phys. Lett. 18, 540-542 (1971).
[7] F. Micheron and G. Bismuth, “Electrical control of fixation and erasure
of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.
20, 79-81 (1972).
[8] D. L. Staebler, W. J. Burke,W. Philips, and J. J. Amodei, “Multiple
storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys.
Lett. 26, 182-184 (1975).
[9] G. Mandulaa, K. Lengyela, L. Kovácsa, M. A. Ellabbanb, R. A. Ruppb, and M.
Fallyb, “Thermal fixing of holographic gratings in nearly stoichiometric
LiNbO3 crystals,” SPIE Proc. 4412, 226-230 (2001).
[10] D. von der Linde, A. M. Glass, and K. F. Rogers, “Multiphoton
photorefractive process for optical storage in LiNbO3,” Appl. Phys. Lett.
25, 155-157 (1974).
[11] F. Kajzar, “Multiphoton resonance effects in conjugated organic
polymers,” Proc. of SPIE 1216, 216-225 (1990).
[12] D. Psaltis, F. Mok, and H.-Y. S. Li, “Nonvolatile storage in
photorefractive crystal”, Opt. Lett. 19, 210-212 (1994).
[13] H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgankar,
“Intensity dependence and white light gating of two color photorefractive
gratings in LiNbO3,” Opt. Lett. 22, 1305-1307 (1997).
[14] Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two step
recording in lithum niobate using CW Lasers,” Phys. Rev. Lett. 78, 2944-
2947 (1997).
[15] D. Gabor, “A new Microscopic principle,” Nature 161, 777-778 (1948).
[16] G. Barbastathis and D. J. Brady, “Multidimensional Tomographic Imaging
Using Volume Holography,” Proc. of IEEE 87, No. 12, 2098 – 2120 (1999).
[17] G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with
a volume holographic filter,” Opt. Lett. 24, 811-813 (1999).
[18] 吳啟守,“光折變體積全像術之波長多工於高密度分波多工器之應用,”中原大學應
用物理研究所碩士論文,中華民國九十年。
[19] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive Coupler for Fault-
Tolerant Coupling,” IEEE Photon. Techno. Lett. 7, 789 (1995).
[20] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive spatial mode
converter for multimode-to-single-mode fiber-optic coupling,” Opt. Lett.
20, 1125 (1995).
[21] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography,
(Academic Press, New York, 1971).
[22] T. T. Tschudi, C. Denz, and T. Kobialka “Aspects of phase-conjugating
elements in analog/digital parallel computing networks,” Proc. of SPIE
1319, 202-203 (1990).
[23] P. D. Henshaw, S. A. Lis, and N. R. Guivens, Jr., “Compact 4-D optical
neural network architecture,”Wavelength (nm) Final Report, contract no.
F49620-89-C-0120 (Sparta, Relative spectral response [10 logl0(R/RO)] of
two Inc., Lexington, Mass., April 1990).
[24] C. C. Sun, Y. M. Chen, and W. C. Su, “An all-optical fiber sensing
system based on random phase encoding and volume holographic
interconnection,” Opt. Eng, Lett. 40, 160 (2001).
[25] V. A. French, A. Siahmakoun, J. Spielvogel, “Angular multiplexing for
lateral shear interferometry using photorefractive BaTiO3,” Proc. SPIE
2622, 522-531(1995).
[26] C. S. Kim, D. S. Noh, J. S. J., S. J. Kim, and J. K. Bae, “New angular
multiplexing method for image storage in BaTiO3,” Proc. of SPIE 2754,
216-226 (1996).
[27] C. C. Sun, C. Y. Hsu, Y. O. Yang, W. C. Su, and A. E. T. Chiou, “All-
optical angular sensing based on holography multiplexing with spherical
waves,” Opt. Eng. 41, 2809-2813 (2002).
[28] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using
orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471-
1473 (1992).
[29] A. Yariv, “Interpage and interpixel cross talk in orthogonal
(wavelength multiplexed) holograms,” Opt. Lett. 18, 652-654 (1993).
[30] G. Barbastathis, A. Pu, M. Levene, D. Psaltis, “Holographic 3D disks
using shift multiplexing,” Proc. SPIE Vol. 2514, 355-362 (1995).
[31] W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of
a shift-multiplexed holographic disc,” Opt. Eng. 42, 1528-1529 (2003).
[32] T. Tschudi, C. Denz, J. Lembcke, and M. Sedlatschek, “Storage of
multivolume holograms using the phase-encoding technique,” Proc. SPIE
2461, 233 (1995)
[33] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using
a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[34] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic
data storage based on orthogonal-phase-code multiplexing,” Appl. Opt.
34, 6012–6015 (1995).
[35] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of
holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
[36] C. C. Sun and W. C. Su, “Three-Dimensional Shifting Selectivity of
Random Phase Encoding in Volume Holograms,” Appl. Opt. 40, 1253-1260
(2001).
[37] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey,
“Holographic data storage in three-dimensional media,” Appl. Opt. 5,
1303-1311 (1966).
[38] H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell
Sys. Technol. J. 48, 2909-2947 (1969).
[39] C. C. Sun, “Simplified model for diffraction analysis of volume
holograms,” Opt. Eng. 42, 1184-1185 (2003).
[40] A. Yariv, and P. Yeh, Optical Waves in Crystals, (John Wiley & Sons, New
York, 1984).
[41] H. Horimai, and J. Li, “A Novel Collinear Optical Setup for Holographic
Data Storage,” in Optical Data Storage 2004, B. V. K., Vijaya Kumar and
H. Kobori, eds., Proc. SPIE 5380, 297-303 (2004).
[42] H. Horimai, and Y. Aoki, “Holographic Versatile Disc (HVD),” ISOM/ODS
2005, ThE6.
[43] H. Horimai, X. Tan, and J. Li, “Collinear Holography,” Appl. Opt. 44,
No. 13, 2575-2579 (2005).
[44] H. Horimai, and X. Tan, “Advanced Collinear Holography,” Opt. Rev. 12,
No. 2, 90-92 (2005).
[45] H. Horimai, and X. Tan, “Holographic Versatile Disc System,” in SPIE
Symposium on Optics & Photonics 2005, Organic Holographic Materials and
Applications Ⅲ (San Diego, California, USA, 2005), Klaus Meerholz eds.,
Proceedings of SPIE 5939, 1-9 (2005).
[46] H. Horimai, and X. Tan, “Collinear technology for a holographic
versatile disk,”Appl. Opt., 45, No. 5, 910-914 (2006).
[47] H. Horimai, X. Tan, and Y, Aoki, “High Density Recording Storage System
by Collinear Holography,” Photonics Management Ⅱ (Strasbourg, France,
2005, John T. Sheridan, and Frank Wyrowski eds., Proc. of SPIE 6187,
618701 (2006).
[48] T. Shimura, S. Ichimura, R. Fujimura, K, Kuroda, X. Tan. and H. Horimai,
“Analysis of a collinear holographic storage system: introduction of
pixel spread function,” Opt. Lett., 31, No. 9, 1208-1210 (2006).
[49] H Horimai and X. Tank, “Read-only holographic versatile disc system
using laser Read-only holographic versatile disc system using laser
diode,” Proc. of SPIE 6252, 62520Z-1- 62520Z-5 (2006). |