博碩士論文 102323100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.147.60.62
姓名 洪薪富(Xin-fu Hong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超塑性成形與快速塑性成形分析比較
(Superplasticity Effect and Superplastic Forming vs. Quick Plastic Forming with AA5XXX Sheets)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
以低的氣壓進行金屬鈑片熱成形在工業界是具有它獨有的優勢的,氣壓熱成形簡單而言就是超塑性成形(SPF)或為快塑成形(QPF),前者的製程條件:1.細晶超塑性材料2.超塑成形溫度3.超塑成形變形速率,而後者則為衍生出專為汽車工業採用的工法。然而定義或者區別以及他們的成形性卻沒有明確的解釋與說明,大多數的金屬例如鋁合金、可分為細晶跟粗晶粒材料,這種微結構所具備的成形條件、即溫度和應變速率,在氣壓成形過程中就可以被分類為超塑性或者非超塑性材料,本論文中對於鋁合金5083超塑性及非超塑性材料分別在不同需求的成形模具內,觀察其成形性進行比較,也對於超塑性成形與快塑成形兩者製程的成形性做比較,結果顯示超塑性成形適合複雜且較難以成形的零件、而在形狀簡單的模具下其厚度分佈也比快塑成形優秀,但此氣壓成形工法的條件較為嚴謹、必須要在符合的溫度(~500℃)、應變速率(一般條件約為10-3~10-4 S-1)之外、更需要具備足夠的成形空間(模具設計)以及超塑性材料(細晶粒 5~10µm),才能完全展現超塑性成形的特色,而在快塑成形中,則可以藉由較大的變形速率完成較為一般的成形零件、其成形要求的溫度較低(~450℃)、應變速率為~10-2 S-1快了超塑性成形將近10倍的速度,表示了兩種氣壓成形工法分別在不同的需求上,有著各別的優缺條件以及重要性。
摘要(英) Abstract
Low pressure gas forming in the industry is an advantage, low pressure gas forming simply, is superplastic forming (SPF) or Quick Plastic Forming (QPF). However, their definitions or distinction together with their formability have not been stated or explained well. Most metals including aluminum alloy, can be either fine or coarse grained. This original microstructures together with specific forming conditions, i.e. temperature and strain rate, determine whether the sheet gas forming process is classified as a superplastic or a non-superplastic one. For this paper superplastic and non-superplastic 5083 aluminum alloy materials are different needs in the mold, comparing observed formability, but also for forming superplastic forming and quick plastic forming process both of compare, the results show superplastic forming for complex parts and forming more difficult, and in the shape of a simple mold having a thickness distribution of excellent faster than quick plastic forming, The results show superplastic forming for forming complex and more difficult parts, but in the shape of a simple mold thickness distribution is better than quick plastic forming, but this gas forming conditions more stringent, must be in compliance with the temperature (~ 500 ℃), strain rate (~ 10-3 ~ 10-4 S-1), more need to have enough space forming (mold design) and superplastic materials (fine-grained 5 ~ 10μm), in order to fully demonstrate the characteristics of superplastic forming, and in quick plastic forming, which forming the required lower temperature (~ 450 ℃), strain rate of ~ 10-2 S-1 , it’s than superplastic forming nearly 10 times faster, gas forming respectively represent two different needs, have their advantages and disadvantages as well as the importance.
關鍵字(中) ★ 超塑性成形
★ 快塑成形
★ 鋁合金5083
關鍵字(英) ★ Superplastic forming (SPF)
★ Quick plastic forming (QPF)
★ AA5083
論文目次 目錄
碩博士論文電子檔授權書 i
摘要 ii
Abstract iii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xi
符號說明 xii
第一章、緒論 1
前言 1
1.1 超塑性成形概論 2
1.1.1 超塑性(Superplasticity) 2
1.1.2 組織超塑性(Structural Superplasticity) 4
1.1.3 環境超塑性(Environmental Superplasticity) 4
1.2 一般超塑成形製程 5
1.2.1一般超塑性與傳統機械加工方法比較 6
1.3 超塑成形組成方程式 7
1.4 快速塑性成形 10
1.4.1 快速塑性成形變形機制(QPF, Deformation mechanisms) 11
第二章、實驗方法與步驟 13
2.1 實驗設備 13
2.2 實驗材料 19
2.3 實驗配置 20
第三章、實驗結果與討論 32
3.1 關於超塑性成形(SPF)與快速超塑性成形(QPF)材料比較 32
3.2 超塑性與非超塑性材料拉伸試驗 33
3.3超塑性與非超塑性材料在深窄模具中的成形性實驗分析 35
3.4 快塑成形在溫度不同下厚度分析比較 39
3.5 超塑成形在溫度不同下厚度分析比較 41
3.6 超塑成形與快塑成形在寬淺杯狀形模具中的厚度分析比較 45
3.7超塑成形與快塑成形在深窄模具中的厚度分析比較 49
四、結論 52
參考文獻 54
參考文獻 參考文獻
1. F. Yang and W. Yang, “Kinetics and Size Effect of Grain Rotations in Nanocrystals with Rounded Triple Junctions”, Scripta Materialia, vol. 61, pp. 919-922, 2009.
2. C. M. Hu, C. M. Lai, P. W. Kao, N. J. Ho, and J. C. Huang, “Quantitative Measurements of Small Scaled Grain Sliding in Ultra-fine Grained Al–Zn Alloys Produced by Friction Stir Processing”, Materials Characterization, vol. 61, pp. 1043-1053, 2010.
3. R.M. Cleveland, A.K. Ghosh, J.R. Bradley, “Comparison of Superplastic Behavior in Two 5083 Aluminum Alloys”, Materials Science and Engineering, A351, pp.228-236, 2003.
4. A.K. Ghosh and C.H. Hamilton, Seminar Course, Taiwan Feb, 13-15, pp.25, 1990.
5. K. Higashi M. Mabuchi and T.G. Langdon, “High Strain Rate Superplasticity in Metallic Materials and the Potential for Ceramic Materials”, ISIJ International, pp.1423-1438, 1996.
6. J.W. Edington K.N. Melton and C.P. Cutler, “Superplasticity”, Progress International Materials Science, Vol. 21, No.2, pp.61-158, 1976.
7. A.K. Ghosh, C.H. Hamilton and J.A. Wert, “Metals Form”, Vol.8, No4, pp.172-190, 1985.
8. A.K. Ghosh and C.H. Hamilton, “Superplastic Forming and Diffusion Bonding”, SPF/DB workshop Taipei, pp.205-213, 1990.
9. C.H. Hamilton, “NATO/AGARD Lecture Series”, No.168, Superplasticity, Chap2, 1989.
10. S. Kalpadjian, “Manufacturing Processes for Engineering Materials”, Chap7, pp.444-446, 2008.
11. C.H. Hamilton, United States Patent, Vol3, p.927& 817.
12. Y. Luo, S.G. Luckey, P.A. Friedman, Y. Peng,“Development of an Advanced Superplastic Forming Process Utilizing a Mechanical Pre-Forming Operation”, International Journal of Machine Tools and Manufacture, Vol.48, pp. 1509-1518, 2008.
13. SKY Aluminum C.LTD, “Superplastic 5083 alloy ALNOVI-1”, pp.1-9, 1994.
14. J. Carpenter, M. T. Smith, Quick Plastic Forming of Aluminum Sheet Metal”, General Motors, 2015.
15. 孫稟厚,“鎂合金AZ31細晶薄板片拉伸性質與氣壓成形特性研究”,國立中央大學機械工程研究所博士論文, pp.20-24,2011.
16. 張書省“超塑性鋁合金5083快速成形研究”,國立中央大學機械工程研究所碩士論文, pp.122-124, 2000.
17. S. Lee, C.P. Chang, H.Y. Wu, W.J. Kim and J. Lee, “Major Superplastic Aluminum Alloys and their Formability”, Proc. of Processing and Fabrication of Advanced Materials III. TMS Fall Meeting, pp. 24-32, 1994.
18. http://www.supergorm-aluminum.com/.
19. M. Kulas, P.W. Green, E.M. Taleff, P.E. Krajewski and T.R. Mcnelley, “Failure Mechanisms in Superplastic AA5083 Materials”, Metallurgical and Materials Transactiona A, Vol. 37A, p.645, 2006.
20. S. Lee, H. Y. Wu, Y. H. Yu, J. Y. Wang and C. P. Chang, “Rapid Forming of Superplastic Aluminum Alloy 5083”, Materials Science and Technology, Vol. 17 No. 11, 2001.
21. 楊錫昌,“鋁鎂合金5083超塑成形研究”,國立中央大學機械工程研究所碩士論文, pp.33, 1994.
指導教授 李雄(Shyong Lee) 審核日期 2015-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明