博碩士論文 101521113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.137.214.219
姓名 王威仁(Wei-ren Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具混亂時序注入機制之全數位高除數次諧波注入鎖定式鎖相迴路
(A High Division-Ratio All-Digital Sub-harmonically Injection-Locked PLL with Chaotic Injection Timing Technique)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一個操作在5 GHz之低相位雜訊全數位次諧波注入鎖定式鎖相迴路。藉由一個額外之延遲鎖定迴路產生10個相位可用於次諧波注入之相位,此次諧波注入式鎖相迴路可以用較低的參考時脈但同時達到與高參考時脈之次諧波注入式鎖相迴路之低相位雜訊效果,同時利用一偽亂波產生器選擇注入相位,將注入之時序打亂,破壞其週期性,可以有效降低次諧波注入式鎖相迴路之高參考突波問題,透過選擇不同組合的注入相位順序,本架構提供了多種注入鎖定模式,可依照對需求之輸出訊號規格調整,達到不同的相位雜訊壓制量與參考突波量,同時由於使用了全數位式的架構,與傳統類比式鎖相迴路比較,其面積與功率消耗較少。
本論文之全數位式鎖相迴路使用90 nm CMOS製程實現晶片,其操作頻率為5 GHz,並且可在100 MHz參考頻率下擁有近於於1 GHz之次諧波注入鎖定之相位雜訊壓制效果,相位雜訊約為-99 dB。電路在操作電壓為1 V時,功率消耗為6.0 mW,而使用亂波注入的機制對於參考突波的衰減量約為14 dB。整體晶片面積為830 × 830 um2,核心電路的面積為228 × 161 um2。
摘要(英) In this thesis, a 5 GHz low phase noise all-digital sub-harmonically injection-locked phase-locked loop (ADSILPLL) is proposed. An all-digital delay-locked loop (ADDLL) is added to provide extra 10 phases of low-phase-noise reference clock for the sub-harmonically injection operation. Proposed PLL uses the different sequence combination of those phases to achieve good phase noise performance without using high reference frequency. By adopting a pseudo chaotic code generator, the injected phase sequences can be randomized and break the periodicity of injection signal to solve the high reference spur issue at SILPLLs. By changing the injected phase sequence, this PLL also provides several different mode with different phase noise performance and reference spur performance for different specification requirement.
The experiment chip of the proposed ADPLL was implemented with 90 nm CMOS process. The measured output frequency is 5 GHz at 1.0 V supply voltage and power consumption is 6.0 mW. The phase noise is equal to -99 dB at 1 MHz frequency offset with 100 MHz reference frequency. The reference spur suppression is about 14 dB compared to full-speed injection. The full chip area is 830 × 830 um2 and the core area is 228 × 161 um2 .
關鍵字(中) ★ 鎖相迴路
★ 全數位式鎖相迴路
★ 注入鎖定式鎖相迴路
★ 參考突波
★ 高除率
★ 相位雜訊
關鍵字(英) ★ PLL
★ ADPLL
★ SILPLL
★ Reference spur
★ High division-ratio
★ Phase noise
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第1章 緒論 1
1.1 研究動機 1
1.2 論文架構 3
第2章 次諧波注入鎖定式鎖相迴路先前技術探討 5
2.1 鎖相迴路簡介 5
2.2 次諧波注入鎖定簡介 7
2.3 次諧波注入鎖定式鎖定迴路面臨到的問題與先前架構 12
2.3.1 注入時序問題 (Injection timing issue) 12
2.3.2 高除數時之相位雜訊壓制能力下降問題 17
2.3.3 注入造成的突波問題 19
2.4 預計論文規格 20
第3章 具混亂時序注入機制之全數位高除數次諧波注入鎖定式鎖相迴路 21
3.1 電路架構與操作 21
3.1.1 全數位式鎖相迴路之操作 22
3.1.2 全數位式延遲鎖定迴路之操作 26
3.1.3 次諧波注入迴路之操作 27
3.2 鎖相迴路系統分析 32
3.2.1 全數位式鎖相迴路之S-domain分析 32
3.2.2 電荷幫浦鎖相迴路之S-domain分析 34
3.2.3 計算數位迴路濾波器之參數 35
3.3 行為模擬 38
3.4 次諧波注入振盪器之系統分析 41
第4章 子電路架構與設計考量 51
4.1 全數位式鎖相迴路之子電路設計 51
4.1.1 相位頻率偵測器 51
4.1.2 時間對數位轉換器 53
4.1.3 數位迴路濾波器 58
4.1.4 數位控制振盪器 59
4.1.5 除頻器 62
4.2 全數位延遲鎖定迴路之子電路設計 63
4.2.1 數位控制延遲線 63
4.2.2 相位偵測器 65
4.2.3 上下數計數器 67
4.3 次諧波注入電路之子電路設計 68
4.3.1 脈波產生器 68
4.3.2 相位選擇器 70
4.3.3 注入模式選擇電路 72
第5章 電路模擬與晶片量測結果 77
5.1 設計流程 77
5.2 布局後電路模擬 78
5.2.1 全數位式鎖相迴路 78
5.2.2 全數位式延遲鎖定迴路 79
5.2.3 次諧波注入鎖定效果 82
5.3 電路布局 86
5.4 晶片照相與量測環境設定 90
5.5 量測結果 95
5.5.1 全數位式鎖相迴路部分量測結果 95
5.5.2 全數位式延遲鎖定迴路部分量測結果 97
5.5.3 不同注入模式之次諧波注入鎖定效果量測 100
5.6 規格比較 106
第6章 結論與未來研究方向 107
6.1 結論 107
6.2 未來研究方向 107
參考文獻 109
參考文獻 [1]黃映祥, “具高速相位選擇器之六十億赫茲全數位式展頻時脈產生器,” 碩士論文, 國立中央大學, 2013
[2]張毓玲, “使用電流級距控制器以達到寬操作頻率範圍之數位式鎖相迴路,” 碩士論文, 國立中央大學, 2010
[3]J. Lee, and H.-D. Wang, “Study of Subharmonically Injection-Locked PLLs,” IEEE J. Solid-State Circuit, vol. 44, no. 5, pp. 1539-1553, May 2009.
[4]高曜煌, 射頻鎖相迴路IC設計, 滄海書局, 2005.
[5]S. Ye, L. Jansson, and I. Galton, “A multiple-crystal interface PLL with VCO realignment to reduce phase noise,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1795-1803, Dec. 2002.
[6]Y.-C. Huang and S.-I. Liu, “A 2.4-GHz subharmonically injection-locked PLL with self-calibrated injection timing,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 417-428, Feb. 2013.
[7]C.-F. Liang and K.-J. Hsiao, “An injection-locked ring PLL with self-aligned injection window,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 90-92, Feb. 2011.
[8]A. Musa, W. Deng, T. Siriburanon, M. Miyahara, K. Okada, and A. Matsuzawa, “A Compact, Low-Power and Low-Jitter Dual-loop Injection Locked PLL Using All-Digital PVT calibration,” IEEE J. Solid-State Circuit, vol. 49, no. 1, pp. 50-60, Jan. 2014.
[9]V. Kratyuk, P. K. Hanumolu, U.-K. Moon, and K. Mayaram, “A Design Procedure for All-Digital Phase-Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, no. 3, pp. 247-251, Mar. 2007.
[10]D. Dunwell, and A. C. Carusone, “Modeling Oscillator Injection Locking Using the Phase Domain Response,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 60, no. 11, pp. 2823-2833, Nov. 2013.
[11]P. Maffezzoni and S. Levantino, “Phase Noise of Pulse Injection-Locked Oscillators,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 61, no. 10, pp. 2912-2919, Oct. 2014.
[12]S.-Y.. Lin and S.-I. Liu, “A 1.5 GHz All-Digital Spread Spectrum Clock Generator,” IEEE J. Solid-State Circuit, vol. 44, no. 11, pp. 3111–3119, Nov. 2009.
[13]涂祐豪, “具寬頻操作與自我相位校正之延遲鎖定迴路與頻率倍頻器,” 碩士論文, 國立中央大學, 2010
[14]C.-L. Wei, T.-K. Kuan, and S.-I. Liu, “A Subharmonically Injection-Locked PLL With Calibrated Injection Pulsewidth,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 62, no. 6, pp. 548-552, Jun. 2015.
[15]A. Elshazly, R. Inti, B. Young and P. K. Hanumolu, “Clock Multiplication Techniques Using Digital Multiplying Delay-Locked Loops,” IEEE J. Solid-State Circuit, vol. 48, no. 6, pp. 1416-1428, June 2013.
[16]D. Park, and S. Cho, “A 14.2 mW 2.55-to-3 GHz Cascaded PLL With Reference Injection and 800 MHz Delta-Sigma Modulator in 0.13 um CMOS,” IEEE J. Solid-State Circuit, vol. 12, no. 12, pp. 2989-2998, Dec. 2012.
[17]I-T. Lee, K.-H. Zeng, and S.-I. Liu, “A 4.8-GHz Dividerless Subharmonically Injection-Locked All-Digital PLL With a FOM of -252.5 dB,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 60, no. 9, pp. 547-551, Dec. 2012.
[18]B. M. Helal, C.-M. Hsu, K. Johnson and M. H. Perrott, “A Low Jitter Programmable Clock Multiplier Based on a Pulse Injection- Locked Oscillator With a Highly-Digital Tuning Loop,” IEEE J. Solid-State Circuit, vol. 44, no. 5, pp. 1391-1400, May 2009.
[19]M. M. Izad, and C.-H. Heng “A Pulse Shaping Technique for Spur Suppression in Injection-Locked Synthesizers,” IEEE J. Solid-State Circuit, vol. 47, no. 3, pp. 652-664, Mar. 2012.
[20]P. C. Maulikm, and D. A. Mercer, “A DLL-Based Programmable Clock Multiplier in 0.18 um CMOS with -70dBc Reference Spur,” IEEE J. Solid-State Circuit, vol. 42, no. 8, pp. 1642-1648, Aug. 2007.
[21]J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, “A Wide Power Supply Range, Wide Tuning Range, All Static CMOD All Digital PLL in 65 nm SOI,” IEEE J. Solid-State Circuit, vol. 43, no. 1, pp. 42-51, Jan. 2008.
[22]Y. Lee, Mina Kim, T. Seong, and J. Choi, “A Low Phase Noise Injection-Locked Programmable Reference Clock Multiplier With a Two-Phase PVT-Calibrator for ΔΣ PLLs,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 62, no. 3, pp. 635-644, Mar. 2015.
[23]B. Razavi, “A Study of Phase Noise in CMOS Oscillator,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331-343, Dec. 2002.
[24]Y.-C. Ho, Y.-S. Yang, C.-C. Chang, and C.-C. Su, “A Near-Threshold 480 MHz 78 µW All-Digital PLL With a Bootstrapped DCO,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2805-2814, Nov. 2013.
[25]W. Deng, D.Yang, T. Ueno, T. Siriburanon, S. Kondo, K. Okada, and A. Matsuzawa, “A Fully Synthesizable All-Digital PLL With Interpolative Phase Coupled Oscillator, Current-Output DAC, and Fine-Resolution Digital Varactor Using Gated Edge Injection Technique,” IEEE J. Solid-State Circuit, vol. 50, no. 1, pp. 68-80, Jan. 2015.
[26]I-T. Lee, K.-H. Zeng, and S.-I. Liu, “A 4.8 GHz Dividerless Subharmonically Injection-Locked All-Digital PLL With a FOM of -252.5 dB,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 60, no. 9, pp. 547-551, Sep. 2013.
[27]D.-S. Kim, H.-S. Song, T.-H. Kim, S.-W. Kim, and D.-K. Jeong, “A 0.3–1.4 GHz All-Digital Fractional-N PLL With Adaptive Loop Gain Controller,” IEEE J. Solid-State Circuit, vol. 45, no. 11, pp. 2300–2311, Nov. 2010.
[28]K.-H. Choi, J.-B. Shin, J.-Y. Sim, and H.-J. Park, “An Interpolating Digitally Controlled Oscillator for a Wide-Range All-Digital PLL,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 56, no. 9, pp. 2055-2063, Sep. 2009.
[29]B. M. Helal, M. Z. Straayer, G.-Y. Wei, and M. H. Perrott, “A Highly Digital MDLL-Based Clock Multiplier That Leverages a Self-Scrambling Time-to-Digital Converter to Achieve Subpicosecond Jitter Performance,” IEEE J. Solid-State Circuit, vol. 43, no. 4, pp. 855-863, Apr. 2008.
[30]R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara, “1.3 V 20 ps Time-to-Digital Converter for Frequency Synthesis in 90-nm CMOS,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 53, no. 3, pp. 220-224, Mar. 2006.
[31]B. Razavi, Design of Analog CMOS Integrated Circuit, New York, McGraw-Hill, 2001.
[32]劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006.
指導教授 鄭國興(Kuo-hsing Cheng) 審核日期 2015-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明