博碩士論文 103323043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.145.105.149
姓名 隋孟軒(Meng-Hsuan Sui)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
(Influences of Ta and Ti-6Al-4V particle Additions on the Mechanical Properties of MgZnCa-Based Amorphous Alloy)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究
★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究
★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討
★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究
★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響★ 鈦基非晶填料應用於Ti-6Al-4V合金硬焊之微結構及機械性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,生物可降解材料在醫學界備受矚目,原因之一是其能夠在植入後於人體內自行降解,不需藉由二次手術取出,減少病患進出醫院的次數。本研究將選用鎂、鋅、鈣為合金系統主元素,皆為人體內原有之金屬元素,以此製成非晶質合金後,期具有良好的生物相容性,同時,具有和骨骼相近之楊氏係數,可應用於可降解之骨科駐植物。然而,鎂鋅鈣非晶質合金在常溫下呈現脆性、工程性能較弱,因此實際應用於需載重之骨科駐植物上仍有困難尚待克服。本研究選用Mg64Zn31Ca5合金系統為基材,添加微米級鉭顆粒與球狀鈦六鋁四釩顆粒製作出非晶質合金複材。實驗結果顯示,鉭顆粒與基材結合情形較鈦顆粒良好,可有效提升其壓縮破裂強度,基材抗壓強度由890 MPa 提升至941 MPa,相較於添加鈦顆粒的782 MPa為高。但由於兩者皆無法有效阻擋Shear band傳遞所以沒有明顯塑性產生。
摘要(英) The biodegradable materials can be degraded spontaneously in human body after implanted, hence the secondary surgery is not required. Therefore, biodegradable materials draw lots of attention in the biomedical implant research. Magnesium, Zinc and Calcium are elements with high content in human body. The Mg-Zn-Ca amorphous alloy has become a potential candidate of degradable orthopedic implants due to its high bio-compatibility and compatible Young’s Modulus to human bones. However, the brittleness restricts its applications. In this study, Mg64Zn31Ca5 bulk metallic glass (BMG) was utilized as the matrix and enhances the plasticity by adding tantalum particles and spherical Ti-6Al-4V particles into the Mg-based BMG matrix. The results of compression test show both matrixes were strengthened by the dispersion strengthening effect of the particles addition. The fracture strength of Mg64Zn31Ca5 BMGC with Ta particle addition can be increased from 890 MPa to 941 MPa. However, no obvious improvement of plasticity can be obtained for these two Mg-based BMGC alloy systems due to the bad adhesion between the particles and the amorphous matrix.
關鍵字(中) ★ 非晶質合金
★ 裂紋
關鍵字(英)
論文目次 中文摘要 I
英文摘要 II
致謝 III
總目錄 IV
圖目錄 VII
表目錄 X
第一章 前言 1
1-1 緒論 1
1-2 研究動機 3
1-3 研究目的 3
第二章 理論基礎 5
2-1 非晶質合金概述 5
2-2 非晶質合金的發展歷程 6
2-3 實驗歸納法則 9
2-4 非晶質合金熱力學 10
2-4-1 非晶質是平衡的介穩態 11
2-4-2 玻璃轉換溫度(Tg) 11
2-4-3 簡化玻璃溫度(Trg) 12
2-4-4 過冷液相區大小(ΔTx) 12
2-4-5 γ與γm 13
2-5 非晶質合金製程簡介 14
2-6 非晶質合金之特性 17
2-6-1 機械性質 18
2-6-2 抗蝕性與抗菌性 18
2-6-3 超塑性與精密加工 19
2-7 非晶質合金的變形機制 20
2-8 外加金屬顆粒選擇法則 21
第三章 實驗步驟 23
3-1 試片製作 23
3-1-1 合金基材與複材配製 23
3-1-2 合金基材熔煉 24
3-1-3 合金複材熔煉 25
3-1-4 非晶質合金棒材製作 25
3-1-5 非晶質薄帶製作 27
3-2 微結構觀察與分析 28
3-2-1 X光繞射分析(XRD) 28
3-2-2 掃描式電子顯微鏡(SEM)觀察兼能量散射質譜分析(EDS) 28
3-3 熱性質分析 29
3-4 機械性質分析 30
3-4-1 壓縮測試 30
3-4-2 硬度及破裂韌性測試 30
第四章 結果與討論 32
4-1 顯微組織觀察與分析 32
4-1-1 基材表面觀察與外加顆粒實際含量計算 32
4-1-2 壓縮前試片之SEM觀察與EDS成份分析 34
4-1-3 X光繞射分析 34
4-2 熱性質分析 35
4-2-1 基材非恆溫熱性質分析 35
4-2-2 複材非恆溫熱性質分析 36
4-3 機械性質分析 37
4-3-1 硬度測試結果與分析 37
4-3-2 破裂韌性測試結果與分析 38
4-3-3 壓縮測試結果與分析 39
4-3-4 壓縮後試片破斷面之SEM觀察 41
第五章 結論 43
參考文獻 44
參考文獻 [1]. D. F. Farrar, J. Rose, “Rheological properties of PMMA bone cements during curing”, Biometerials, vol. 22, 2001, pp. 3005-3013.
[2]. M. P. Staiger, A.M. Pietak, J.Huadmai, G. Dias, “Magnesium and its alloys as orthopedic biometerials: A review”, Biometerials, vol.27, 2006, pp. 1728-1734.
[3]. G. Song, S. Song, ”A possible biodegradable magnesium implant material”, Advance Engineering Materials, vol. 9, 2007, pp. 298-302..
[4]. J.S.C.Jang, Y. S. Chang, T. H. Li, P J. Hsieh, J. C. Huang, Chi Y. A. Tsao, “Plasticity enhancement of Mg58Cu28.5Gd11Ag2.5 base bulk metallic glass composites dipersion strengthened by Ti particles”, Journal of Alloys and Compounds, vol. 504, 2010, pp. 102-105.
[5]. J. Eckert, J. Das, S. Pauly, C. Duhamel, “Mechanical properties of bulk metallic glasses and composites”, J. Mater. Res., vol. 22, 2007, pp. 285-307.
[6]. D. C. Hofmann, “Bulk metallic glasses and their composites: A brief history of diverging fields”, Journal of Materials, vol. 2013, 2013, pp.1-8.
[7]. J. S. C. Jang, L. J. Chang, J. H. Young, J. C. Huang and C. Y. A. Tsao, “Synthesis and characterization of the Mg-based amorphous/ nano ZrO2 composite alloy”, Intermetallics, vol. 14, 2006, pp. 945-950.
[8]. Q. F. Li, H. R. Weng, Z. Y. Suo, Y. L. Ren, X. G. Yuan, K. Q. Qiu, ”Microstructure and mechanical properties of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites ”, Materials Science and Engineering A, vol. 487, 2008, pp. 301-308.
[9]. F. Rosalbino, S. De Negri, A. Saccone, E. Angelini, S. Delfino, “Bio-corroion characterization of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical applications”, J. Mater. Sci.: Mater. Med.,vol.21, 2010, pp. 1091-1098.
[10]. B. Zberg, P. J. Uggowitzer, J. F. Loffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature Materials, vol. 8, 2009, pp. 887-891.
[11]. X. Gu, G. J. Shiflet, F. Q. Guo, S. J. Poon, “Mg-Ca-Zn bulk metallic glasses with high strength and significant ductility”, J. Mater. Res., vol. 20, 2005, pp. 1935-1938.
[12]. Y. Y. Zhao, E. Ma, J. Xu, “Reliability of compressive fracture strength of Mg-Zn-Ca bulk metallic glasses: Flaw sensitivity and Weibull statistics”, Scripta Materialia, vol. 58, 2008, pp.496-499.
[13]. J. S. C. Jang, J. Y. Ciou, T. H. Hung, J. C. Huang, X. H. Du, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, APPLIED PHYSICS LETTERS, vol. 92, 2008.
[14]. V. K. Balla, S. Bodhak, S. Bose, A. Bandyopadhyay, “Porous tantalum structures for bone implants: Fabrication, mechanical and vitro biological properties”, Acta Biomaterialia, vol. 6, 2010, pp. 3349-3359.
[15]. W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, pp. 869-870.
[16]. T Egami, “Magnetic amorphous alloys: physics and technological applications”, Rep. Prog. Phys., vol. 47, 1984, pp. 1601-1725.
[17]. J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, J. Appl. Phys., vol. 19, 1934, pp. 37.
[18]. A. Brenner, D. E. Couch, E. K. Williams, J. Res. Natn. Bur. Stand, vol. 44, 1950, pp.109
[19]. W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, pp. 869.
[20]. D. Turnbull, “Phase Changes”, Solid State Phys., vol. 3, 1956, pp.225.
[21]. D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, J. Phys., vol. 35, 1974, pp. 1-10.
[22]. D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, J. Phy. Chem. Glasses, vol. 7, 1966, pp. 159
[23]. H. A. Davies, “The formation of metallic glass”, J. Phys. Chem. Glasses, vol. 17, 1976, pp. 159.
[24]. 吳學陞著,新興材料-塊狀非晶質金屬材料,工業材料,第149期,1999年。
[25]. A. Inoue, K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, 1995, pp. 7.
[26]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng. A, vol. 226-228, 1997, pp. 357.
[27]. A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by Metallic Mold Casting Method”, Mater. Trans. JIM, vol. 32-7, 1991, pp. 609.
[28]. A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloy with High Tensile Strength Produced by High-Pressure Die Casting Method”, Mater. Trans. JIM, vol. 33-10, 1992, pp.937.
[29]. A.Peker, W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Appl. Phys., vol. 63, 1993, pp.2342.
[30]. H. Choi-Yim, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scr. Mater., vol. 45, 2001, pp. 1039-1045.
[31]. Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scr. Mater., vol. 49, 2003, pp. 843-848.
[32]. N. Nishiyama, K. Takenaka, T. Wada, H. Kimura, A. Inoue, “New Pd-based bulk glassy alloys with high glass-forming ability”, Journal of Alloys and Compounds, vol. 434-435, 2007, pp. 138-140.
[33]. F. X. Qin, X. M. Wang, A. Inoue, “Effect of annealing on microstructure and mechanical property of Ti-Zr-Cu-Pd bulk metallic glass”, Intermetallics, vol.15, 2007, pp. 1337-1342.
[34]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol. 36, 1995, pp.866-875.
[35]. A. Inoue, T. Zhang, T. Masumoto, “Glass-forming ability of alloys”, Journal of Non-Crystalline Solids, vol.156-158, 1993, pp. 473-480.
[36]. A. Inoue, T. Zhang, A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol.269-272, 1998, pp.855-864.
[37]. R. E. Reed-Hill, Physical Metallurgy Principles, Boston, USA, 1994.
[38]. S. R. Elliot, “Physics of Amorphous Materials”, 1990, pp. 30.
[39]. P. G. Debenedetti, F. H. Stillinger, “Supercooled liquids and the glass transition”, Nature, vol. 410, 2001, pp. 259-267.
[40]. H. S. Chen, “Evidence of a Glass-Liquid Transition in a Gold-Germanium”, J. Chem. Phys., vol.48, 1968, pp. 2560-2565.
[41]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, vol.48, 2000, pp.279-306
[42]. X. H. Du, C. Huang, C. T. Liu and Z. P. Liu, “New Criterion of Glass Forming Ability for Bulk Metallic Glasses”, J. Appl. Phys., vol. 101, 2007, pp. 88-108.
[43]. 顧宜著,複合材料,新文京開發出版公司,1992年。
[44]. R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology, vol.9, New York, USA, 1991.
[45]. W. Paul and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, 1973, pp. 531.
[46]. B. Li, N. Nordstrom and E. J. Lavernia, “Spray forming of zircaloy-4”, Materials Science and Engineering, vol. 237, 1997, pp. 207.
[47]. Denny A. Jones, “Principles and Prevention of Corrosion”, 2nd ed., Prentice Hill. Inc, 1996.
[48]. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, “Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes”, Materials Science and Engineering, vol.94, 2002, pp. 141.
[49]. P. S. Grant, “Spray forming”, Progress in Materials Science, vol.39, 1995, pp. 497.
[50]. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami and N. D. Bassim, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solid, vol. 284, 2001, pp. 134.
[51]. A. Inoue and T. Zhang, “Fabrication of bulk glassy Zr55Cu30Ni5Al10 alloy of 30 mm in diameter by a suction casting method” , Materials Transactions, JIM, vol.37, 1996, pp.185-187.
[52]. 許樹恩、吳泰伯著,X光繞射原理與材料結構分析,中國材料科學學會,1996年,pp. 10。
[53]. H. J. Guntherodt, H. Beck, Glassy Metals I, Springer, Berlin Heidelberg, Germany, 1981.
[54]. T. G. Nieh and J. Wadsworth, “Homogeneous deformation of bulk metallic glasses”, Scripta Materialia, vol.54, 2006, pp.387-392.
[55]. 林於隆,塊狀非晶質合金簡介,台北科技大學上課教材,2009年。
[56]. G. Kumar, H. X. Tang and J. Schroers, “Nanomoulding with amorphous metals”, Nature, vol.457, 2009, pp.868-873.
[57]. A. S. Argon, “Plastic Deformation in Metallic Glasses”, Acta Metallurgica, vol. 27, 1979.
[58]. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sening indentation experiments”, Journal of Materials Research, vol. 7, 1992, pp. 1564..
[59]. S. R. Elliot, “Physics of Amorphous Materials”, 2nd Ed., USA, 1990.
[60]. F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, vol. 25, 1997, pp. 407.
[61]. J. S. C. Jang, T. H. Li, S. R. Jian, J. C. Huang, T. G. Nieh, ” Effects of characteristics of Mo dispersions on the plasticity of Mg-based bulk metallic glass composites”, Intermetallics, vol.19, 2011, pp.738-743.
[62]. P. J. Hsieh, L. C. Yang, H. C. Su, C. C. Lu, J. S. C. Jang, “Improvement of mechanical properties in MgCuYNdAg bulk metallic glasses with adding Mo particles”, Journal of Alloys and Compounds, vol.504, 2010, pp.98-101.
[63]. M. Kinaka, H. Kato, M. Hasegawa, A. Inoue, “High specific strength Mg-based bulk metallic glass matrix composite highly ductilized by Ti dispersoid”, Materials Science and Engineering: A, vol.494, 2008, pp.299-303
[64]. M. Shanthi, M. Gupta, A. E. W. Jarfors, M. J. Tan, “Synthesis, characterization and mechanical properties of nano alumina particulate reinforced magnesium based bulk metallic glass composites”, Materials Science and Engineering: A, vol.528, 2011, pp.6045-6050.
[65]. A. Inoue, B. L. Shen, H. Koshiba, H. Kato and A. R. Yavari, “Cobalt-Based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties”, Nature Material, vol. 2, 2003, pp. 661.
指導教授 鄭憲清 審核日期 2015-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明