參考文獻 |
[1]. D. F. Farrar, J. Rose, “Rheological properties of PMMA bone cements during curing”, Biometerials, vol. 22, 2001, pp. 3005-3013.
[2]. M. P. Staiger, A.M. Pietak, J.Huadmai, G. Dias, “Magnesium and its alloys as orthopedic biometerials: A review”, Biometerials, vol.27, 2006, pp. 1728-1734.
[3]. G. Song, S. Song, ”A possible biodegradable magnesium implant material”, Advance Engineering Materials, vol. 9, 2007, pp. 298-302..
[4]. J.S.C.Jang, Y. S. Chang, T. H. Li, P J. Hsieh, J. C. Huang, Chi Y. A. Tsao, “Plasticity enhancement of Mg58Cu28.5Gd11Ag2.5 base bulk metallic glass composites dipersion strengthened by Ti particles”, Journal of Alloys and Compounds, vol. 504, 2010, pp. 102-105.
[5]. J. Eckert, J. Das, S. Pauly, C. Duhamel, “Mechanical properties of bulk metallic glasses and composites”, J. Mater. Res., vol. 22, 2007, pp. 285-307.
[6]. D. C. Hofmann, “Bulk metallic glasses and their composites: A brief history of diverging fields”, Journal of Materials, vol. 2013, 2013, pp.1-8.
[7]. J. S. C. Jang, L. J. Chang, J. H. Young, J. C. Huang and C. Y. A. Tsao, “Synthesis and characterization of the Mg-based amorphous/ nano ZrO2 composite alloy”, Intermetallics, vol. 14, 2006, pp. 945-950.
[8]. Q. F. Li, H. R. Weng, Z. Y. Suo, Y. L. Ren, X. G. Yuan, K. Q. Qiu, ”Microstructure and mechanical properties of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites ”, Materials Science and Engineering A, vol. 487, 2008, pp. 301-308.
[9]. F. Rosalbino, S. De Negri, A. Saccone, E. Angelini, S. Delfino, “Bio-corroion characterization of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical applications”, J. Mater. Sci.: Mater. Med.,vol.21, 2010, pp. 1091-1098.
[10]. B. Zberg, P. J. Uggowitzer, J. F. Loffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature Materials, vol. 8, 2009, pp. 887-891.
[11]. X. Gu, G. J. Shiflet, F. Q. Guo, S. J. Poon, “Mg-Ca-Zn bulk metallic glasses with high strength and significant ductility”, J. Mater. Res., vol. 20, 2005, pp. 1935-1938.
[12]. Y. Y. Zhao, E. Ma, J. Xu, “Reliability of compressive fracture strength of Mg-Zn-Ca bulk metallic glasses: Flaw sensitivity and Weibull statistics”, Scripta Materialia, vol. 58, 2008, pp.496-499.
[13]. J. S. C. Jang, J. Y. Ciou, T. H. Hung, J. C. Huang, X. H. Du, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, APPLIED PHYSICS LETTERS, vol. 92, 2008.
[14]. V. K. Balla, S. Bodhak, S. Bose, A. Bandyopadhyay, “Porous tantalum structures for bone implants: Fabrication, mechanical and vitro biological properties”, Acta Biomaterialia, vol. 6, 2010, pp. 3349-3359.
[15]. W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, pp. 869-870.
[16]. T Egami, “Magnetic amorphous alloys: physics and technological applications”, Rep. Prog. Phys., vol. 47, 1984, pp. 1601-1725.
[17]. J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, J. Appl. Phys., vol. 19, 1934, pp. 37.
[18]. A. Brenner, D. E. Couch, E. K. Williams, J. Res. Natn. Bur. Stand, vol. 44, 1950, pp.109
[19]. W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, pp. 869.
[20]. D. Turnbull, “Phase Changes”, Solid State Phys., vol. 3, 1956, pp.225.
[21]. D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, J. Phys., vol. 35, 1974, pp. 1-10.
[22]. D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, J. Phy. Chem. Glasses, vol. 7, 1966, pp. 159
[23]. H. A. Davies, “The formation of metallic glass”, J. Phys. Chem. Glasses, vol. 17, 1976, pp. 159.
[24]. 吳學陞著,新興材料-塊狀非晶質金屬材料,工業材料,第149期,1999年。
[25]. A. Inoue, K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, 1995, pp. 7.
[26]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng. A, vol. 226-228, 1997, pp. 357.
[27]. A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by Metallic Mold Casting Method”, Mater. Trans. JIM, vol. 32-7, 1991, pp. 609.
[28]. A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloy with High Tensile Strength Produced by High-Pressure Die Casting Method”, Mater. Trans. JIM, vol. 33-10, 1992, pp.937.
[29]. A.Peker, W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Appl. Phys., vol. 63, 1993, pp.2342.
[30]. H. Choi-Yim, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scr. Mater., vol. 45, 2001, pp. 1039-1045.
[31]. Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scr. Mater., vol. 49, 2003, pp. 843-848.
[32]. N. Nishiyama, K. Takenaka, T. Wada, H. Kimura, A. Inoue, “New Pd-based bulk glassy alloys with high glass-forming ability”, Journal of Alloys and Compounds, vol. 434-435, 2007, pp. 138-140.
[33]. F. X. Qin, X. M. Wang, A. Inoue, “Effect of annealing on microstructure and mechanical property of Ti-Zr-Cu-Pd bulk metallic glass”, Intermetallics, vol.15, 2007, pp. 1337-1342.
[34]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol. 36, 1995, pp.866-875.
[35]. A. Inoue, T. Zhang, T. Masumoto, “Glass-forming ability of alloys”, Journal of Non-Crystalline Solids, vol.156-158, 1993, pp. 473-480.
[36]. A. Inoue, T. Zhang, A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol.269-272, 1998, pp.855-864.
[37]. R. E. Reed-Hill, Physical Metallurgy Principles, Boston, USA, 1994.
[38]. S. R. Elliot, “Physics of Amorphous Materials”, 1990, pp. 30.
[39]. P. G. Debenedetti, F. H. Stillinger, “Supercooled liquids and the glass transition”, Nature, vol. 410, 2001, pp. 259-267.
[40]. H. S. Chen, “Evidence of a Glass-Liquid Transition in a Gold-Germanium”, J. Chem. Phys., vol.48, 1968, pp. 2560-2565.
[41]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, vol.48, 2000, pp.279-306
[42]. X. H. Du, C. Huang, C. T. Liu and Z. P. Liu, “New Criterion of Glass Forming Ability for Bulk Metallic Glasses”, J. Appl. Phys., vol. 101, 2007, pp. 88-108.
[43]. 顧宜著,複合材料,新文京開發出版公司,1992年。
[44]. R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology, vol.9, New York, USA, 1991.
[45]. W. Paul and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, 1973, pp. 531.
[46]. B. Li, N. Nordstrom and E. J. Lavernia, “Spray forming of zircaloy-4”, Materials Science and Engineering, vol. 237, 1997, pp. 207.
[47]. Denny A. Jones, “Principles and Prevention of Corrosion”, 2nd ed., Prentice Hill. Inc, 1996.
[48]. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, “Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes”, Materials Science and Engineering, vol.94, 2002, pp. 141.
[49]. P. S. Grant, “Spray forming”, Progress in Materials Science, vol.39, 1995, pp. 497.
[50]. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami and N. D. Bassim, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solid, vol. 284, 2001, pp. 134.
[51]. A. Inoue and T. Zhang, “Fabrication of bulk glassy Zr55Cu30Ni5Al10 alloy of 30 mm in diameter by a suction casting method” , Materials Transactions, JIM, vol.37, 1996, pp.185-187.
[52]. 許樹恩、吳泰伯著,X光繞射原理與材料結構分析,中國材料科學學會,1996年,pp. 10。
[53]. H. J. Guntherodt, H. Beck, Glassy Metals I, Springer, Berlin Heidelberg, Germany, 1981.
[54]. T. G. Nieh and J. Wadsworth, “Homogeneous deformation of bulk metallic glasses”, Scripta Materialia, vol.54, 2006, pp.387-392.
[55]. 林於隆,塊狀非晶質合金簡介,台北科技大學上課教材,2009年。
[56]. G. Kumar, H. X. Tang and J. Schroers, “Nanomoulding with amorphous metals”, Nature, vol.457, 2009, pp.868-873.
[57]. A. S. Argon, “Plastic Deformation in Metallic Glasses”, Acta Metallurgica, vol. 27, 1979.
[58]. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sening indentation experiments”, Journal of Materials Research, vol. 7, 1992, pp. 1564..
[59]. S. R. Elliot, “Physics of Amorphous Materials”, 2nd Ed., USA, 1990.
[60]. F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, vol. 25, 1997, pp. 407.
[61]. J. S. C. Jang, T. H. Li, S. R. Jian, J. C. Huang, T. G. Nieh, ” Effects of characteristics of Mo dispersions on the plasticity of Mg-based bulk metallic glass composites”, Intermetallics, vol.19, 2011, pp.738-743.
[62]. P. J. Hsieh, L. C. Yang, H. C. Su, C. C. Lu, J. S. C. Jang, “Improvement of mechanical properties in MgCuYNdAg bulk metallic glasses with adding Mo particles”, Journal of Alloys and Compounds, vol.504, 2010, pp.98-101.
[63]. M. Kinaka, H. Kato, M. Hasegawa, A. Inoue, “High specific strength Mg-based bulk metallic glass matrix composite highly ductilized by Ti dispersoid”, Materials Science and Engineering: A, vol.494, 2008, pp.299-303
[64]. M. Shanthi, M. Gupta, A. E. W. Jarfors, M. J. Tan, “Synthesis, characterization and mechanical properties of nano alumina particulate reinforced magnesium based bulk metallic glass composites”, Materials Science and Engineering: A, vol.528, 2011, pp.6045-6050.
[65]. A. Inoue, B. L. Shen, H. Koshiba, H. Kato and A. R. Yavari, “Cobalt-Based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties”, Nature Material, vol. 2, 2003, pp. 661.
|