![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:11 、訪客IP:18.191.54.249
姓名 林鈞仁(Chun-Jen Lin) 查詢紙本館藏 畢業系所 資訊工程學系 論文名稱
(A Study on the Minimum Area of Rectilinear Polygons Realized by Turn Sequences)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在本論文中,我們考慮以其頂點角度之序列,來重建最小面積直角多邊形的問題。我們提出以下兩個結果:
1. 研究n 點的最小面積直角多邊形的性質,並以此性質將之分為四類,以及算出其中三類多邊形的個數。
2. 給定一直角凸多邊形之角度序列S,我們提出一計算其最小面積之公式。摘要(英) In this thesis, we consider the problem of reconstructing rectilinear polygons with minimum area, from a sequence of angles of vertices.
We provide two results:
1. Studying properties of n-vertex rectilinear polygons with minimum area, classifying those polygons into four types by these properties, and computing the number of polygons in each of three of them.
2. Given a sequence S of angles of a monotone rectilinear polygon, we propose a formula to compute the minimum of area of monotone rectilinear polygons with turn sequence S.關鍵字(中) ★ 直角多邊形
★ 頂點角度序列
★ 最小面積
★ 凸多邊形關鍵字(英) ★ rectilinear polygon
★ turn sequence
★ minimum area
★ monotone論文目次 1 Introduction 1
2 Preliminaries 3
2.1 Formulas to Compute (n) and Δ(n) . . . . . . . . . . . . . . . . . . . . . 3
2.2 Pick′s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Canonical Pockets of Rectilinear Polygons . . . . . . . . . . . . . . . . . . 4
2.4 Introduction of Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Realizations of Polygons with Area (n) 6
3.1 The Patterns of Polygons of Type I . . . . . . . . . . . . . . . . . . . . . . 6
3.2 The Patterns of Polygons of Type II.1 . . . . . . . . . . . . . . . . . . . . 9
3.3 The Patterns of Polygons of Type II.2 . . . . . . . . . . . . . . . . . . . . 11
3.4 The Patterns of Polygons of Type II.3 . . . . . . . . . . . . . . . . . . . . 14
4 Minimum Area of Monotone Polygons with a Given Turn Sequence 18
4.1 The Area of P(S) with One Stair and Two Adjacent Stairs . . . . . . . . . 19
4.2 The Area of P(S) with Two Opposite Stairs . . . . . . . . . . . . . . . . . 21
4.3 The Area of P(S) with Three Stairs . . . . . . . . . . . . . . . . . . . . . . 27
4.4 The Area of P(S) with Four Stairs . . . . . . . . . . . . . . . . . . . . . . . 32
5 Conclusion Remarks 40
Reference 41參考文獻 [1] Bajuelos, A.L., Tomas, A.P., Marques, F.: Partitioning Orthogonal Polygons by
Extension of All Edges Incident to Re
ex Vertices: Lower and Upper Bounds on
the Number of Pieces. In: Lagana, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan,
C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 127-136. Springer,
Heidelberg (2004)
[2] Biedl, T., Durocher, S., Snoeyink, J.: Reconstructing polygons from scanner data.
Theoretical Computer Science 412, 4161-4172 (2011)
[3] Chen, D.Z., Wang, H.: An improved algorithm for reconstructing a simple polygon
from its visibility angles. Computational Geometry: Theory and Applications 45,
254-257 (2012)
[4] Disser, Y., Mihalak, M., Widmayer, P.: Reconstructing a simple polygon from its
angles. Computational Geometry: Theory and Applications 44, 418-426 (2011)
[5] O′Rourke, J.: An alternate proof of the rectilinear art gallery theorem. Journal of
Geometry 21, 118-130 (1983)
[6] O′Rourke, J.: Uniqueness of orthogonal connect-the-dots. In: Toussaint, G.T. (ed.)
Computational Morphology, pp. 97-104 (1988)
[7] Pick, Georg.: Geometrisches zur Zahlenlehre". Sitzungsberichte des deutschen
naturwissenschaftlich-medicinischen Vereines fur Bohmen Lotos" in Prag. (Neue
Folge) 19: 311-319 (1899)
[8] Sang Won Bae, Yoshio Okamoto, and Chan-Su Shin: Area bounds of rectilinear
polygons realized by angle sequences. Proceedings of 23rd International Symposium
on Algorithms and Computation (ISAAC 2012), Lecture Notes in Computer Science
7676 (2012)指導教授 何錦文、高明達(Chin-Wen Ho Ming-Tat Ko) 審核日期 2015-8-31 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare