博碩士論文 102521056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.191.28.129
姓名 洪士淵(Shih-Yuan Hung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 鍺量子點光電晶體最佳化設計與實作之研究
(Optimization and Characterization of Germanium Quantum Dots Phototransistors)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 量子點的電子能階★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性
★ 自對準矽奈米線金氧半場效電晶體之研製★ 鍺浮點記憶體之研製
★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析★ 應用於數位電視頻帶之平衡不平衡轉換器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用選擇性氧化複晶矽鍺柱/氮化矽/矽基材的結構來形成高品質之鍺量子點,以作為高效率的長波光吸收層,進而製備出可適用於850奈米到1570奈米波長的鍺量子點光電晶體。

  藉由調變複晶矽鍺柱之尺寸與氧化條件,本文得以精準控制量子點大小及鑽入氮化矽與基板的深度,進而控制鍺量子點碰觸到矽基板後形成矽鍺殼之大小與厚度。鍺量子點及其下端矽鍺殼的大小,直接影響了鍺量子點光電晶體的吸光層厚度與提升載子移動之速度,透過以上特性,得以針對吸光波長之需求對元件進行最佳化之設計。

由於鍺量子點埋入氮化矽中會受到壓縮式應力,且隨著鍺量子點尺寸愈小,所承受的壓縮式形變愈大。藉此,我們可以調整掩埋在氮化矽中鍺量子點之大小,來調變鍺量子點所感受之壓縮式應力,並將其有效應用於N-type基板之鍺量子點光電晶體的閘堆疊層之中。

50奈米、90奈米鍺量子點成長於N-type基板之鍺量子點光電晶體,在850奈米波長光源(功率為 4.375mW)照射下,通道關閉區域其光電流與暗電流比值分別可達到 7.53×109 以及 3.69×109 倍,且響應度 (responsivity) 最高分別可達到 1605.58 A/W 以及 1483.32 A/W;90奈米鍺量子點成長於P-type基板之鍺量子點光電晶體,通道關閉區域其光電流與暗電流比值可達到 1.76×1010 倍,且響應度 (responsivity) 在最高可達到2996.33 A/W。吸光波長可達 1570 奈米,適用於光連結之應用。

摘要(英) In this thesis, we generated a high quality germanium quantum dots (Ge QDs) by selective oxidation of SiGe nano-pillar / Si3N4 / Si substrates as the light absorption layer with high efficiency at long wavelength , and manufactured the Ge QDs phototransistors that can apply to wavelength 850 nm to 1570nm illumination.

By tuning the size of poly-SiGe piller and the oxidation environment, we are able to control the size of Ge QD and the depth that Ge QD migrates into the Si3N4 and Si substrate. Progressively, we can control the size and thickness of SiGe-shell, which forms as Ge QD “contact” with the Si substrate. The sizes of Ge QD and SiGe shell below Ge QD determine the thickness of light absorption layer of Ge QDs phototransistors and the increment on the mobility of carrier. Through the above properties, we can optimize and characterize transistor device according to needs of absorbing different wavelength illumination.

When Ge QD embedded within Si3N4, it generates size-dependent compressive strains that the smaller Ge QD will suffer the higher strain. By tuning the size of Ge QD that embed in Si3N4, we are able to control the compressive stain suffered by Ge QD, and apply it to Ge QD phototransistor with N-type Si substrate.

Under 4.375mW illumination at 850 nm, Ge QD phototransistors with 50nm and 90nm Ge QD formed on N-type Si substrate have the photo-current-to-dark current ratio with 7.53×109 / 3.69×109 tines and responsivity with 1605.58 / 1483.32 A/W;Under 4.375mW illumination at 850 nm, Ge QD phototransistor with 90nm Ge QD formed on P-type Si substrate has the photo-current-to-dark current ratio with 1.76×1010 tines and responsivity with 2996.33 A/W. The absorption wavelength can reach 1570nm that are appropriate to the optical interconnects.

關鍵字(中) ★ 量子點 關鍵字(英) ★ quantum dot
論文目次 目錄

中文摘要 I

英文摘要 III

致謝 V

圖目錄 IX

表目錄 XIII

第一章 光電晶體的發展與研究動機 1

1-1 光電晶體簡介 1

1-2 鍺材料的優勢與困難 2

1-3 應用鍺材料之光偵測器近年發展 3

1-4 研究動機 4

1-5 論文概要 4

第二章 鍺量子點光電晶體的介紹與原理 7

2-1 製作一體成型鍺奈米球/二氧化矽/矽鍺合金異質結構 7

2-2 應力(strain)之應用 8

2-3 鍺量子點光電晶體操作機制探討 10

第三章 鍺量子點光電晶體製作流程 20

3-1 薄膜堆積 20

3-2 定義主動區/形成場氧化層 20

3-3 定義電晶體源極/汲極區域 21

3-4 定義基極開口區域 22

3-5 閘介電層薄膜沉積 22

3-6 定義主動區之奈米複晶矽鍺柱/氧化形成鍺量子點 23

3-7 控制閘介電層厚度/閘極製作 23

3-8 後段製程 24

第四章 鍺量子點光電晶體電性量測分析與探討 35

4-1-1 鍺量子點光電晶體未照光下之電性量測 35

4-1-2應力對光電晶體未照光下之電性討論 36

4-2 鍺量子點光電晶體照光下之電性量測 (power dependency) 37

4-3 光電流增益與波長相依度 40

4-4 變溫(77 K-300 K)量測 40

第五章 結論與未來展望 58

參考文獻 59

參考文獻 [1] Optical Communication Modules Brought Innovation to Communication Technology , Mitsuaki Nishie , 2012.

[2] J. Michel, J. Liu and L. C. Kimerling,“High-performance Ge-on-Si photodetectors.”

Nature Photonics, 4, p527, 2010.

[3] W. C. Dash et al., “Intrinsic optical absorption in single-crystal germanium and silicon at 77℃ and 300℃,” Physical Review, vol. 99, p.1151, 1955.

[4] A. K. Dutta and M. Saif Islam, “Novel broadband photodetector for optical

communication,”Proc. of SPIE, 6014, 6014c, 2005.

[5] F. K. LeGoues et al., “Anomalous strain relaxation in SiGe thin films and superlattices, ”Physical Review Letters, vol. 66, p. 2903, 1991.

[6] M. Oehem et al., “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Optics Express, 22, 839, 2014.

[7] Long Chen, Po Dong, and Michal Lipson School of Electrical and Computer Engineering, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding” Optics Express, ,Vol. 16, No. 15, 2008.

[8] Giussani A, Rodenbach P, Zaumeil P, Dabrowski J, Kurps R, Weidner G, Mussig H J, Storck P, Wollschlager J andSchroedar T J. Appl. Phys. 2009

[9] Jurgen Michel1, Jifeng Liu1 & Lionel C. Kimerling1 “High-performance Ge-on-Si photodetectors”,Nature Photonics , 527 - 534 , 2010.

[10] D. Choi, Y. Ge, J. Cagnon, S. Stemmer and J.S. Harris, "Low surface roughness and threading dislocation Ge growth on Si (001) substrate," J. Crystal Growth., 310, 4273-4279 , 2008

[11] Langdo T A, Leitz C W, Currie M T, Fitzgerald E A, Lochtefeld A and Antoniadis D A 2000 High quality Ge on Si by epitaxial necking Appl. Phys. Lett. 76, 3700 ,2000.

[12] M. H. Kuo, C. C. Wang, W. T. Lai, Tom George, and P. W. Li “ Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance ” Applied Physics Letters 101, 223107 , 2012.

[13] 張宇瑞,“鍺量子點在氮化矽中的形成機制與鍺量子點可見光光二極體的研製”,碩士論文,國立中央大學,民國100年。

[14] C. C. Wang, P. H. Liao, M. H. Kuo, T. George, and P. W. Li, “The curious case of 66 exploding quantum dots: anomalous migration and growth behaviors of Ge under Si oxidation,” Nanoscale Res. Lett., 8, 192 , 2013.

[15] P. H. Liao, T. C. Hsu, K. H. Chen, T. H. Cheng, T. M. Hsu, C. C. Wang, T. George, and P.W. Li, “Size-tunable strain engineering in Ge nanocrystals embedded within SiO2 and Si3N4,” Appl. Phys. Lett., 105, 172106 , 2014.

[16] K. Sawano, Y. Abe, H. Satoh, Y. Shiraki, and K. Nakagawa, “ Compressive strain dependence of hole mobility in strained Ge channels” , Appl. Phys. Lett. 87, 192102 ,2005.

[17] D. Kuzum, “Interface-engineered Ge MOSFETs for future high performance CMOS applications,” dissertation for the degree of doctor, Stanford university ,2009.

[18] M H Kuo , W T Lai , T M Hsu , Y C Chen , C W Chang , W H Chang and P W Li “Designer germanium quantum dot phototransistor for near infrared optical detection and Amplification” , Nanotechnology 26 , 2015.

[19] S.M. Sze, "Physics of Semiconductor Devices", John Wiley & Sons, Inc., 1981.

[20] 郭銘浩, “量身訂作”鍺量子點以應用於近紅外線光偵測元件之研製”,碩士論文,國立中央大學,民國 102 年

指導教授 李佩雯、郭明庭(Pei-wen Li Ming-ting Kuo) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明