博碩士論文 963403011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.189.14.219
姓名 朱祖孝(Tsu-Hsiao Chu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
(The application of press forming with ultrasonic vibration-shear, deep drawing and equal-channel angle extrusion)
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究
★ 旋轉鍛造螺旋齒輪製程分析★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析
★ 以有限元素法與反應曲面法分析增量式板金成形★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計
★ 以有限元素法與反應曲面法分析兩點增量成形★ 引伸成形加工問題之有限元素分析
★ 應用流函數法分析軸對稱熱擠製加工問題★ 非對稱壓延加工問題之有限元素法分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文之目的在於研究超音波振動於金屬成形加工之效應。研究中主要以超音波振動輔助沖切、引伸與等通彎角擠製等三種製程為主,探討模具與工件之加工特性並進行試驗,分析比較超音波振動所產生的影響。
本論文研究分為四個主題,包括超音波振動實驗設備的設計製作、超音波振動輔助沖切模具設計、振動輔助引伸模具設計與超音波振動輔助等通彎角擠製模具設計與其試驗。研究中,首先利用有限元素法配合超音波加工理論,針對超音波輔助沖切、引伸與等通彎角擠製等實驗所需的模具進行設計並成功應用於相關試驗。
於超音波輔助沖切研究中,以模具間隙、沖壓速度與進料角度等三因子的不同水準進行實驗設計,配合反應曲面法(Response Surface Methodology, RSM)規畫傳統沖切與超音波輔助沖切兩大組試驗來討論,結果顯示超音波由於動態振動的特性,於低間隙、沖壓速度慢與高進料角時,越能減少毛邊的生成。
其次,配合伺服沖床(Servo press)可調式加工曲線,結合沖壓速度與振動振幅等三因子的不同水準進行實驗設計,以反應曲面法探討超音波振動對引伸加工的效應,其結果顯示,配合適當之加工曲線與超音波振幅能夠降低沖頭之成形負荷與成形過程之摩擦力,並增加材料在引伸過程中之成形極限,於引伸加工製程中加載超音波振動所產生的動態摩擦應力的特性,為改善產品品質及提升加工經濟效益的主因。
最後,探討超音波輔助等通彎角擠製(ECAE)之影響,其結果顯示超音波加載於ECAE製程,最大成形力負荷隨著超音波振幅增加而減少,有利於模具與沖頭的使用;試片的硬度隨著振幅增加也隨之增加,顯示於ECAE製程中的確能強化材料的機械強度;試片的表面粗糙度隨振幅提升而下降,顯示超音波振動能使界面的潤滑劑有更好的分布與作用,改善摩擦條件。然而,利用有限元素模擬分析的結果,得知當擠製速度大於特定臨界抽拉速度時,前述超音波振動作用的摩擦效應將幾乎完全消失。
本論文針對超音波加工模具設計、超音波輔助沖切、引伸與等通彎角擠製等製程分別進行了研究與分析,並藉由實驗之結果了解不同加工製程之特性,期能夠以此結果供日後研究超音波輔助加工之參考。
摘要(英) The purpose of this paper is to investigate the effect of ultrasonic vibration to the process of metal forming. The three main processes in the investigation are the shear with ultrasonic vibration, the deep drawing with ultrasonic vibration and equal-channel angle extrusion with ultrasonic vibration to study the characteristics between mold and workpiece and to analyze the influence of ultrasonic vibration.
The paper is divided into four themes, including the design of test equipment with ultrasonic vibration, the design of shearing mold with ultrasonic vibration and the design of ECAE mold with ultrasonic vibration. Using finite element method with ultrasonic processing theory to mold design for the shear with ultrasonic vibration, the deep drawing with ultrasonic vibration and ECAE with ultrasonic vibration are successfully applied to the relevant tests.
First, In the investigation of the shear with ultrasonic vibration, the die clearance, the shearing speed and the feeding angle are the three factors with different levels in experiment design. The traditional shearing process and shearing process with ultrasonic vibration are two groups into discussion with RSM(Response surface methodology, RSM). The results showed that low die clearance and high feeding angle can reduce burr formation more due to the characteristics of dynamic vibration.
Secondly, with adjustable working curve in servo press combined with punch speed and vibration amplitude are the three factors with different levels. The RSM is used to investigate the effect on the deep drawing process with ultrasonic vibration. The results showed that the punch load and the friction force could be reduced with the appropriate process of ultrasonic amplitude and working curve. It also can increase the material limitation in the deep drawing process. The characteristic of the dynamic frictional stress with ultrasonic vibration is the main reason to improve the product quality and enhance the economic process.
Finally, the influence of ECAE with ultrasonic vibration is discussed. The results showed that the maximum load decreased with the increasing ultrasonic amplitude in favor of using the punch. The hardness of workpiece can also increase with the increasing ultrasonic amplitude. The manufacturing process is shown in ECAE can indeed strengthen the mechanical strength of the material. The surface roughness of the workpiece can be reduced with the increasing ultrasonic amplitude. It showed that the lubricant in the interface can get better distribution and effect to improve the conditions of friction. However, when speed is greater than a certain critical drawing speed, the friction effect of ultrasonic vibration will almost completely disappear in the use of finite element method to analyze the result.
The paper is investigated in the mold design with ultrasonic vibration, the shear with ultrasonic vibration, the deep drawing with ultrasonic vibration and ECAE with ultrasonic vibration. The paper can also understand the characteristics of different working process as a result of possible reference for future study of the ultrasonic assisted forming.
關鍵字(中) ★ 超音波振動
★ 剪切
★ 引伸
★ 等通彎角擠製
關鍵字(英) ★ ultrasonic vibration
★ shear
★ deep drawing
★ equal-channal angle extrusion
論文目次 目 錄
中文摘要 i
英文摘要 iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 3
1.3 文獻回顧 4
1.3.1 超音波輔助成形加工 4
1.3.2 有屑加工-沖切 7
1.3.3 無屑加工-引伸與等通彎角擠製 9
1.4 論文總覽 16
第二章 超音波之基本理論 18
2.1 前言 18
2.2 體積效應 18
2.3 表面效應 20
第三章 有屑加工-剪切 27
3.1 前言 27
3.2 研究方法 27
3.2.1 模具設計 28
3.3 實驗設計與試驗設備 29
3.3.1 實驗設計 29
3.3.2 實驗設備與方法 30
3.4 結果與討論 30
3.5 本章小結 33
第四章 無屑加工-引伸 42
4.1 前言 42
4.2 引伸模具設計與實驗設備 42
4.3 實驗規劃與配置 44
4.4 結果與討論 45
4.4.1 實驗一 45
4.4.2 實驗二 46
4.4.3 實驗三 47
4.5 本章小結 48
第五章 無屑加工-等通彎角擠製 76
5.1 前言 76
5.2 ECAE模具設計 76
5.2.1 母模設計 77
5.2.2 超音波振動系統設計 77
5.3 試片製作 78
5.4 實驗條件 78
5.5 實驗量測 79
5.5.1 維氏Vickers硬度量測 79
5.5.2 表面粗糙度量測 79
5.6 試驗結果與討論 79
5.6.1 超音波振動對於ECAE對成形力之探討 79
5.6.2 超音波振動施加於ECAE對硬度之探討 80
5.6.3 超音波振動輔助ECAE對表面粗糙度之探討 81
5.7 有限元素分析 82
5.8 超音波輔助多道次ECAE有限元素模擬與實驗驗證 84
5.8.1 實驗驗證 84
5.8.2 有限元素分析檢驗臨界速度 85
5.8.3 超音波對應變與應力分布之探討 86
5.9 本章小結 86
第六章 結論與未來展望 105
6.1 結論 105
6.2 未來展望 106
參考文獻 ……………………………………………………………………. 108


















表目錄

表3-1 Box-Behnken實驗設計與試驗結果 35
表4-1 模具尺寸 49
表4-2 實驗水準配置表 50
表4-3 實驗參數水準規劃表(中心式合成設計) 50
表4-4 SPCC不同引伸曲線之引伸力比較 52
表4-5 鋁合金5052不同引伸曲線之引伸力比較 52
表4-6 鋁合金5052不同引伸曲線之引伸深度比較 53
表4-7 SPCC實驗數值 54
表4-8 鋁合金5052實驗數值 55
表5-1 原始試片硬度(HV) 87
表5-2 未施加超音波之試片硬度(HV) 87
表5-3 軸向振幅4.9 µm之試片硬度(HV) 88
表5-4 軸向振幅9.6 µm之試片硬度(HV) 88
表5-5 一般傳統ECAE加工的試片表面粗糙度(單位µm) 89
表5-6 加載軸向超音波輔助ECAE加工的試片表面粗糙度(單位µm) 89
表5-7 鋁1050材料機械性質 89
表5-8 模擬參數 90









圖目錄
圖1-1 超音波振動系統 2
圖1-2 超音波振動降低塑流應力比較圖[1] 5
圖1-3 沖切斷面示意圖 8
圖1-4 引伸加工示意圖 11
圖1-5 多階式加工曲線[37] 12
圖1-6 ECAE 模具幾何參數示意圖 14
圖2-1 靜態應力( )與交變應力( )的應力重疊效應[3] 19
圖2-2 摩擦力、聲波軟化與應力疊加之效應 [52] 20
圖2-3 超音波線材抽拉加工-與振動方向平行之接觸面 22
圖2-4 (a)沖頭位移與超音波振動位移關係圖(單位周期) (b)沖頭速度與超音波振動速度關係圖(單位周期) 23
圖2-5 超音波線材抽拉加工-與振動方向垂直之接觸面 25
圖2-6 (a)塊A與塊B相對關係 (b)速度和時間關係與相對應之摩擦力 26
圖3-1 超音波沖切模具圖 36
圖3-2 進料角定義示意圖 37
圖3-3 進料角示意圖 37
圖3-4 超音波沖頭模態振形圖(18.47kHz) 38
(a) 傳統沖切斷面圖 (b) 超音波輔助沖切斷面圖 38
圖3-5 傳統沖切與振動輔助沖切之毛邊高度比較圖(間隙5%) 38
(a) 傳統沖切斷面圖 (b) 超音波輔助沖切斷面圖 39
圖3-6 傳統沖切與超音波振動輔助沖切之毛邊高度比較圖(間隙10%) 39
(a) 傳統沖切斷面圖 (b) 超音波輔助沖切斷面圖 39
圖3-7 傳統沖切與超音波振動輔助沖切之毛邊高度比較圖(間隙15%) 39
圖3-8 傳統沖切試驗與超音波振動輔助試驗之反應曲面比較圖(進料角與間隙) 39
圖3-9 傳統沖切試驗與超音波振動輔助試驗之反應曲面比較圖(速度與進料角) 40
圖3-10 傳統沖切試驗與超音波振動輔助試驗之反應曲面比較圖(速度與間隙) 40
圖3-11 超音波沖切與傳統沖切加工力量比較圖 41
圖4-1 引伸模具成品圖 56
圖4-2 直驅式伺服沖床 57
圖4-3 振動子 57
圖4-4 一次引伸曲線 58
圖4-5 二次引伸曲線 58
圖4-6 不同引伸曲線與最大引伸力比較(SPCC,引伸深度5mm) 59
圖4-7 不同引伸曲線與最大引伸力比較(鋁合金5052,引伸深度5mm) 59
圖4-8 不同引伸曲線與極限引伸深度比較(鋁合金5052) 60
圖4-9 不同時機加載振動對引伸力之比較圖(SPCC) 61
圖4-10 加載振動對引伸力之比較局部放大圖(SPCC) 61
圖4-11 在不同時機加載振動之比較圖(鋁合金5052) 62
圖4-12 在不同時機加載振動之比較局部放大圖(鋁合金5052) 62
圖4-13 不同振幅對最大引伸力之比較圖(SPCC) 63
圖4-14 不同振幅對最大引伸力之局部放大圖(SPCC) 63
圖4-15 不同振幅最大引伸力之比較圖(鋁合金5052) 64
圖4-16 不同振幅最大引伸力之局部放大圖(鋁合金5052) 64
圖4-17 二次曲線比例與引伸速度的反應曲面圖(SPCC) 65
圖4-18 二次曲線比例與振幅的反應曲面圖(SPCC) 65
圖4-19 引伸速度與振幅的反應曲面圖(SPCC) 66
圖4-20 引伸速度與振幅關係圖(二次比例0.3,SPCC) 66
圖4-21 引伸速度與振幅關係圖(二次比例0.9,SPCC) 67
圖4-22 引伸速度與二次曲線比例關係圖(振幅1.7μm,SPCC) 67
圖4-23 引伸速度與二次曲線比例關係圖(振幅5μm,SPCC) 68
圖4-24 二次曲線比例與引伸速度的反應曲面圖(鋁合金5052) 68
圖4-25 二次曲線比例與振幅的反應曲面圖(鋁合金5052) 69
圖4-26 引伸速度與振幅的反應曲面圖(鋁合金5052) 69
圖4-27 二次曲線比例與振幅關係圖(引伸速度0.06mm/s,鋁合金5052) 70
圖4-28 二次曲線比例與振幅關係圖(引伸速度3mm/s,鋁合金5052) 70
圖4-29 二次曲線比例與引伸速度關係圖(振幅1.7μm,鋁合金5052) 71
圖4-30 二次曲線比例與引伸速度關係圖(振幅5μm,鋁合金5052) 71
圖4-31 二次曲線比例與引伸速度的反應曲面圖(鋁合金5052) 72
圖4-32 二次曲線比例與電壓的反應曲面圖(鋁合金5052) 72
圖4-33 引伸速度與振幅的反應曲面圖(鋁合金5052) 73
圖4-34 二次曲線比例與振幅之深度關係圖(引伸速度0.06mm/s,鋁合金5052) 73
圖4-35 二次曲線比例與振幅之深度關係圖(引伸速度0.06mm/s,鋁合金5052) 74
圖4-36 二次曲線比例與引伸速度之深度關係圖(振幅1.7μm,鋁合金5052) 74
圖4-37 二次曲線比例與引伸速度之深度關係圖(振幅1.7μm,鋁合金5052) 75
圖5-1 ECAE模具成品照像圖 90
圖5-2 ECAE母模組成元件照像圖 91
圖5-3 超音波振動系統 91
圖5-4 聚能器有限元素分析 (a)振動模態向量圖 (b)振動應力分佈圖 92
圖5-5 超音波沖頭有限元素分析 (a)振動模態向量圖 (b)振動應力分佈 93
圖5-6 試片截面切斷處 94
圖5-7 試片截面硬度量測位置示意圖 94
圖5-8 表面粗糙度量測示意圖 95
圖5-9 傳統ECAE加工之成形力 95
圖5-10 施加軸向振幅4.9µm之成形力 96
圖5-11 施加軸向振幅9.6µm之成形力 96
圖5-12 有無超音波最大成形力比較圖 97
圖5-13 試片表面照像圖(a)原始試片 (b)傳統ECAE加工之試片 97
(c)加載超音波輔助ECAE加工程形之試片(光學顯微鏡) 97
圖5-14 模擬起始位置定義 98
圖5-15 傳統ECAE實驗與有限元素模擬之行程-負載比較圖 98
圖5-16 試片斷面硬度分布與有限元素分析之等效應變分布對照圖 99
圖5-17 Y-Z斷面Y軸方向之(a)硬度分布(b)有限元素應變分布圖 100
圖5-18 Y-Z斷面Z軸方向之(a)硬度分布(b)有限元素應變分布圖 101
圖5-19 不同母模上升速度所得之沖頭負載-行程圖 102
圖5-20 有限元素模擬之試片斷面應變分布圖 103
圖5-21 加載超音波與未加載超音波之應力比較圖 104

參考文獻 參考文獻
[1] Blaha, F., and Langenecker, B., “Tensile deformation of zinc crystal under ultrasonic vibration”, Naturwissenschaften, v.42, pp. 556, 1955.
[2] Langenecker, B., “Effects of ultrasound on deformation characteristics of metals”, IEEE Transactions on Sonics and Ultrasonics, 13, 1-8, 1966.
[3] Nevill, G. E. and Brotzen, F. R., “ The effect of vibration on the static yield strength of low-carbon steel”, Proc. Am. Soc. Testing Materials, 57, 751-755, 1957.
[4] Pasierb, A., and Wojnar, A., “An experimental investigation of deep drawing and drawing processes of thin-walled products with utilization of ultrasonic vibrations”, Journal of Materials Processing Technology, 34(1), 489-494, 1992.
[5] Siegert, K., and Möck, A., “Wire drawing with ultrasonically oscillating dies”, Journal of Materials Processing Technology, 60(1), 657-660, 1996.
[6] Petruzelka, J., Sarmanova, J., & Sarman, A., “The effect of ultrasound on tube drawing”, Journal of materials processing technology, 60(1), 661-668, 1996.
[7] Jimma, T., Kasuga, Y., Iwaki, N., Miyazawa, O., Mori, E., Ito, K., and Hatano, H., “An application of ultrasonic vibration to the deep drawing process”, Journal of Materials Processing Technology, 80-81 , 406-412, 1998.
[8] Siegert, K., “Influencing the friction in metal forming processes by superimposing ultrasonic waves”, CIRP Annals-Manufacturing Technology, 50, n1, 195-200, 2001.
[9] Murakawa, M., and Jin, M., “The utility of radially and ultrasonically vibrated dies in the wire drawing process”, Journal of Materials Processing Technology, 113, 81-86, 2001.
[10] Hayashi, M.,  Jin, M., Thipprakmas, S.,  Murakawa, M., Hung, J.C., Tsai, Y.C., and Hung, C.H., “Simulation of ultrasonic-vibration drawing using the finite element (FEM) ”, Journal of Materials Processing Technology, 140 , 30-35, 2003.
[11] Kumar, V.C., and Hutchings, I.M., “Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration”, Tribology International, 37, 833-840, 2004.
[12] Hung, J. C., and Hung, C., “The influence of ultrasonic-vibration on hot upsetting of aluminum alloy”, Ultrasonics, 43(8), 692-698, 2005.
[13] Suh, C. M., Song, G. H., Suh, M. S., and Pyoun, Y. S., “Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology”, Materials Science and Engineering: A, 443(1), 101-106, 2007.
[14] Ashida, Y., and Aoyama, H., “Press forming using ultrasonic vibration”, Journal of Materials Processing Technology, 187, 118-122, 2007.
[15] Ting, W., Dongpo, W., Gang, L., Baoming, G., and Ningxia, S.,“Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing”, Applied Surface Science, 255(5), 1824-1829, 2008.
[16] Liu, Y., Suslov, S., Han, Q., Xu, C., and Hua, L., “Microstructure of the pure copper produced by upsetting with ultrasonic vibration”, Materials Letters, 67(1), 52-55, 2012.
[17] Djavanroodi, F., Ahmadian, H., Koohkan, K., and Naseri, R., “Ultrasonic assisted-ECAP”, Ultrasonics. Volume 53, Issue 6, August 2013, Pages 1089–1096, 2013.
[18]Li, M., “An experimental investigation on cut surface and burr in trimming aluminum autobody sheet”, Journal of Materials Processing Technology, Vol. 113, pp. 81-86, 2001.
[19] Hambli, R., “Prediction of burr height formation in blanking process using neural network”, International Journal of Mechanical Seciences, Vol. 44, pp.2089-2102, 2002.
[20]Shim, K.H., Lee, S.K., Kang, B.S. and Hwang, S.M., “Investigation on blanking on thin sheet metal using the ductile fracture criterion and its experiment verification”, Journal of Material Processing Technology, Vol. 155-156, pp. 1935-1942, 2004.
[21]Joo, B.Y., Rhim, S.H. and Oh, S.I., “Micro-hole fabrication by mechanical punching process”, Journal of Material Processing Technology, Vol. 170, pp. 593-601, 2005.
[22]Kim, S.S., Han, C.S. and Lee, Y.S., “Development of a new burr-free hydro-mechanical punching”, Journal of Materials Processing Technology, Vol. 162-163, pp.524-529, 2005.
[23]Tekiner, Z., Nalbant, M. and Gürün, H., “An experimental study for the effect of different clearances on burr, smooth-sheared and blanking force on aluminium sheet metal”, Materials and Design, Vol. 27, pp. 1134-1138, 2006.
[24]Greban, F., Monteil, G. and Roizard, X.,“Influence of the structure of blanked materials upon the blanking quality of copper alloys”, Journal of Materials Processing Technology, Vol. 186, pp. 27-32, 2007.
[25]Bing, G.J.A. and Wallbank, J., “The effect of using a sprung stripper in sheet metal cutting”, Journal of Materials Processing Technology, Vol. 200, pp.176-184, 2008.
[26]Husson, C., Correia, J.P.M. and Ahzi, S., “Finite elements simulations of thin copper sheets blanking:Study of blanking parameters on sheared edge quality”, Journal of Materials Processing Technology, Vol. 199, pp. 74-83, 2008.
[27]Mackensen, A., Golle, M. and Hoffmann, H.,“Experimental investigation of the cutting force reduction during the blanking operation of AHSS sheet materials”, CIRP Annals – Manufacturing Technology, Vol. 59, pp. 283-286, 2010.
[28] Manabea, K., Koyamaa, H., Yoshiharab, S., Yagamic, T., “Development of a combination punch speed and blank-holder fuzzy control system for the deep-drawing process”, Journal of Materials Processing Technology, Vol. 125–126, pp.440–445, 2002.
[29] Colgan, M., and Monaghan, J.,“Deep drawing process: analysis and experiment”, Journal of Matrials Processing Technology, Vol. 132, pp.35-41, 2003.
[30] Sheng, Z.Q., Jirathearanat, S., and Altan, T.,“Adaptive FEM Simulation for Prediction of Variable Blank Holder Force in Conical Cup Drawing”, International Journal of Machine Tools & Manufacture, Vol. 44, pp.487-494, 2004.
[31] Gavas, M., aand Izciler, M., “Design and application of blank holder system with spiral spring in deep drawing of square cups”, Journal of Materials Processing Technology, Vol. 171, pp. 274–282, 2006.
[32] Savas, V., and Secgin, O.,“A new type of deep drawing die design and experiment results”, Materials and Design, Vol. 28, pp.1330-1333, 2007.
[33] Gharib, H., Wifi, A.S., Younan, M. and Nassef, A.,“Optimization of The Blank Holder Force in Cup Drawing”, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 18, pp. 291-294, 2006.
[34] Yagami, T., Manebe, K., and Yamauchi, Y., “Effect of alternating blank holder motion of drawing and wrinkle elimination on deep-drawability”, Journal of Materials Processing Technology, Vol. 187-188, pp. 187-191, 2007.
[35] Gavas, M. and Izciler, M., “Effect of blank holder gap on deep drawing of square cups ”, Materials and Design, Vol. 28, pp.1641-1646, 2007.
[36] Padmanabhana, R., Oliveiraa, M.C., Alvesb, J.L., and Menezesa, L.F. “Influence of process parameters on the deep drawing of stainless steel”, Finite Elements in Analysis and Design, Vol. 43, pp. 1062–1067, 2007.
[37] Maeno, T., Osakada, K. and Mori, K. “Reduction of friction in compression of plates by load pulsation”, International Journal of Machine Tools & Manufacture, Vol51, pp. 612–617,2011.
[38] Kriechenbauer, S., Mauermann, R., Muller, P. “Deep drawing with superimposed low-frequency vibrations onservo-screw presses”, Procedia Engineering, Vo. 81, pp. 905 – 913,2014.
[39] Segal, V.M., “Materials processing by simple shear”, Materials Science and Engineering: A , 197, pp.157-164, 1995.
[40] Rosochowski, A. and Olejnik, L., “Numerical and physical modelling of plastic deformation in 2-turn equal channel angular extrusion”, Journal of Materials Processing Technology, Vol. 125–126, pp.309-316, 2012.
[41] Kim,W.J., Namgung, J.C.and Kim J.K., “Analysis of strain uniformity during multi-pressing in equal channel angular extrusion”, Scripta Materialia, Vol. 53, pp. 293-298, 2005.
[42] Xu, S., Zhao, G., Ma, X. and Ren, G., “Finite element analysis and optimization of equal channel angular pressing for producing ultra-fine grained materials”, Journal of Materials Processing Technology, Vol. 184, pp. 209-216, 2007.
[43] Nagasekhar, A.V., Yip, T.H. and Seow, H.P., “Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing”, Journal of Materials Processing Technology, Vol. 192–193, pp. 449-452, 2007.
[44] Jiang, H., Fan, Z. and Xie, C., “3D finite element simulation of deformation behavior of CP-Ti and working load during multi-pass equal channel angular extrusion”, Materials Science and Engineering: A, Vol. 485, pp. 409-414, 2008.
[45] Patil, V., Chakkingal, U. and Prasanna Kumar, T.S., “Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation”, Journal of Materials Processing Technology, Vol. 209, pp. 89-95, 2009.
[46] Nagasekhar, A.V., Yoon, S.C., Tick-Hon, Y. and Kim, H.S., “An experimental verification of the finite element modeling of equal channel angular pressing”, Computational Materials Science, Vol. 46, pp. 347-351, 2009
[47] Djavanroodi, F. and Ebrahimi, M.,“Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation”, Materials Science and Engineering: A, Vol. 527, pp. 1230-1235, 2010.
[48] Luri, R., Luis Pérez, C.J., Salcedo, D., Puertas, I., León, J., Pérez, I. and Fuertes, J.P., “Evolution of damage in AA-5083 processed by equal channel angular extrusion using different die geometries”, Journal of Materials Processing Technology, Vol. 211, pp. 48-56, 2011.
[49] Si, J.Y., Gao, F. and Zhang, J., “Finite Element Analysis of Die Geometry and Process Conditions Effects on Equal Channel Angular Extrusion for β-Titanium Alloy”, Journal of Iron and Steel Research International, Vol. 19, pp. 54-58, 2012.
[50] Basavaraj, P., Chakkingal, V., and Prasanna Kumar, T. S.,“ Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation”, Journal of materials processing technology, Vol. 209(1), pp. 89-95, 2009.
[51] Bunget, C. and Ngaile, G.,” Influence of ultrasonic vibration on micro-extrusion”, Ultrasonics, Vol. 51,pp. 606–616, 2011.
[52] Yao, Z., Kim, G.Y., Faidley, L., Zou, Q., Mei, D., and Chen, Z., ”Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting”, Journal of materials processing technology, Vol. 212, pp. 640-616, 2012.
[53] Jana, S. and Ong, N.S., ”Effect of punch clearance in the high-speed blanking of thick metals using an accerlator designed for a mechanical press”, Journal of Mechanical Working Technology, Vol. 19, pp. 55-72, 1989.
[54] Li, M., ”An experimental investigation on cut surface and burr in trimming aluminum autobody sheet”, Journal of Materials Processing Technology, Vol. 113, pp. 81-86, 2001.
[55] 島川正憲,超音波工學理論實務,復漢出版社出版,1993年1月。
指導教授 葉維磬 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明