博碩士論文 102521092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.188.175.66
姓名 黃家靖(Chia-ching Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微小化之超寬頻帶通濾波器
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用微小化之超寬頻帶通濾波器為主軸,以應用於ALMA (Atacama Large Millimeter/Submillimeter Array) Band-1無線電波天文望遠鏡接收機。此帶通濾波器為接收系統內混波器後端之中頻濾波器,濾除雜訊干擾後將訊號傳遞至低雜訊放大器。電路製作上,以橋式T 線圈作為基本組件,採用積體被動元件(Integrated passive device,IPD)製程實現,以縮小電路尺寸利於系統封裝。

電路設計上,首先介紹以積體被動元件實現之橋式T 線圈,橋式T 線圈能夠寬頻地等效傳輸線並達成電路面積微型化。微小化之超寬頻帶通濾波器,系採用多模態與分散式兩種傳輸線濾波器為架構,配合橋式T 線圈使用,能維持電路表現,並電路面積遠小於傳統濾波器所需。其中多模態寬頻帶通濾波器中心頻為8.5 GHz,電氣尺寸僅為中心頻率下之0.044λ0×0.052λ0;分散式寬頻帶通濾波器中心頻為8.2 GHz,電氣尺寸僅為中心頻率下之0.055λ0×0.063λ0。

ALMA Band-1接收機系統之中頻帶通濾波器規格要求:通帶內植入損耗越平坦越好或是通帶內低頻損耗能略大於高頻損耗。本論文使用被動等化器串接於微小化多模態帶通濾波器之後,以消除集膚效應(skin effect)造成損耗隨頻率變大的現象。此改良植入損耗之多模態寬頻帶通濾波器電路面積為1.6923 mm×1.931 mm,而電氣尺寸在中心頻率8.5 GHz下為0.048λ0×0.052λ0。

本論文所實現微小化之超寬頻帶通濾波器,透過橋式T 線圈的技術能有效縮小電路面積,並加入等化器以增加通帶平坦度,皆使用積體被動元件(IPD)製程,如此實現ㄧ易整合於ALMA Band-1接收機中微小化之帶通濾波器。

摘要(英) In this work, in order to apply to the development of ALMA (Atacama Large Millimeter/Submillimeter Array) Band-1 receiver front-end, Miniaturized Ultra-Wide Bandpass Filter (BPF) is proposed. The proposed BPF filter out the noise and interference then deliver the signal to low-noise Amplifier (LNA).In fabrication, the bridged-T coil can be designed as a wideband transmission-line equivalent and be realized in integrated passive device (IPD) process with very compact circuit size, which makes the circuit easy to package.

First, the bridged-T coils which are realized in integrated passive device (IPD) process are equivalent to transmission-line on wideband and reduce the circuits size. Miniaturized Ultra-Wide Bandpass Filters were design by Muti-mode resonator (MMR) and distributed filter, which were transmission line filters. To cooperate with the bridged-T coils, the frequency response vary slightly and the circuits size is much less than conventions. The MMR BPF was design center frequency at 8.5 GHz with circuit size of 0.044λ0×0.052λ0 .The distributed BPF was design center frequency at 8.2 GHz with circuit size of 0.055λ0×0.063λ0 .

The request of BPF in ALMA Band-1 receiver is that the flatter in-band insertion loss, the better or the low frequency insertion loss is more than the high. Using the passive equalizer which cascades after MMR BPF to reduce the insertion loss grow with frequency phenomenon caused by skin effect. This MMR BPF with insertion loss improvement was design center frequency at 8.5 GHz with circuit size of 0.048λ0×0.052λ0 .

By using bridged-T coils to implement transmission lines, the Miniaturized Ultra-Wide Bandpass Filter was realized with compact size, then cascades with an equalizer to improve the insertion loss variation. They are all fabrication in IPD process to realize a high integration Miniaturized Ultra-Wide Bandpass Filter in ALMA Band-1 receiver.
關鍵字(中) ★ 帶通濾波器
★ 多模態
★ 分散式
★ 被動等化器
關鍵字(英) ★ bandpass filter
★ muti-mode
論文目次 第一章 緒論 1

1. 1 研究動機 1

1. 2 文獻回顧 2

1. 3 章節介紹 4

第二章 多模態寬頻帶通濾波器 5

2. 1 電路架構 5

2. 2 橋式T線圈 7

2. 2. 1 設計原理 7

2. 2. 2 設計理論推導 10

2. 3 多模態寬頻帶通濾波器第一版 12

2. 3. 1 電路規格與架構 12

2. 3. 2 電路模擬與實作 15

2. 4 多模態寬頻帶通濾波器第二版 21

2. 4. 1 電路規格與架構 21

2. 4. 2 電路模擬與實作 23

2. 5 多模態寬頻帶通濾波器第三版 28

2. 5. 1 電路規格與架構 28

2. 5. 2 電路模擬 29

2. 6 結果討論 32

第三章 分散式寬頻帶通濾波器 34

3. 1 電路架構 34

3. 2 分散式寬頻帶通濾波器第一版 35

3. 2. 1 電路規格與架構 35

3. 2. 2 電路模擬與實作 39

3. 3 分散式寬頻帶通濾波器第二版 44

3. 3. 1 電路規格與架構 44

3. 3. 2 電路模擬 44

3. 4 結果討論 46

第四章 被動等化器 48

4. 1 被動等化器簡介 48

4. 2 被動等化器架構 50

4. 2. 1 電路規格 50

4. 2. 2 電路模擬 51

4. 3 改良植入損耗之多模態寬頻帶通濾波器 53

第五章 結論 57

參考文獻 59
參考文獻 [1] R. Zhang and L. Zhu, “Synthesis Design of a Wideband Bandpass Filter With Inductively Coupled Short-Circuited Multi-Mode Resonator,” IEEE Microw. Wirel. Components Lett., vol. 22, no. 10, pp. 509–511, Oct. 2012.

[2] T. S. Horng, J. M. Wu, L. Q. Yang, and S. T. Fang, “A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth,” in IEEE MTT-S International Microwave Symposium Digest, 2003, 2003, pp. 1015–1018.

[3] 李駿華, "無頻寬減損之微小化功率分配器與巴特勒矩陣," 碩士論文 國立中央大學, 2011.

[4] 曾子豪, "無頻寬減損之微小化集總元件被動電路," 碩士論文 國立中央大學, 2012.

[5] 劉宣宏, "微型化寬頻六埠網路接收機前端電路," 碩士論文 國立中央大學, 2014.

[6] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. components, hybrids, Manuf. Technol., vol. 15, no. 4, pp. 483–490, 1992.

[7] Y. C. Chiou, Y. F. Lee, J. T. Kuo, and C. C. Chen, “Planar multimode resonator bandpass filters with sharp transition and wide stopband,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 439–442, 2008.

[8] K. Ma, K. C. B. Liang, R. M. Jayasuriya, and K. S. Yeo, “A wideband and high rejection multimode bandpass filter using stub perturbation,” IEEE Microw. Wirel. Components Lett., vol. 19, no. 1, pp. 24–26, 2009.

[9] H. Wang, L. Zhu, W. Menzel, and Z. N. Chen, “Ultra-wideband (UWB) bandpass filters using hybrid microstrip/CPW structures,” Proc. Asia-Pacific Microw. Conf. Proc., pp. 1216–1219, 2006.

[10] Y.-C. Chiou, J.-T. Kuo, and Eisenhower Cheng, “Broadband quasi-Chebyshev bandpass filters with multimode stepped-impedance resonators (SIRs),” IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3352–3358, Aug. 2006.

[11] J.-S. Hong, “Microstrip Filters for RF/Microwave Applications, 2nd Edition,” pp. 166–169.

[12] H. Shaman and J.-S. Hong, “Recent development of ultra-wideband (UWB) bandpass filters using distributed stub transmission line structures,” 2009 Mediterrannean Microw. Symp., pp. 1–4, 2009.

[13] Y. Shen and C. L. Law, “Compact UWB bandpass filter with high suppression at 2.4 and 5.8 GHz,” Electron. Lett., vol. 48, no. 14, p. 851, 2012.

[14] J. K. Lee and Y. S. Kim, “Ultra-wideband bandpass filter with improved upper stopband performance using defected ground structure,” IEEE Microw. Wirel. Components Lett., vol. 20, no. 6, pp. 316–318, 2010.

[15] E. Song, J. Cho, W. Lee, M. Shin, and J. Kim, “A Wide-Band Passive Equalizer Design on PCB Based on Near-End Crosstalk and Reflections for 12.5 Gbps Serial Data Transmission,” IEEE Microw. Wirel. Components Lett., vol. 18, no. 12, pp. 794–796, Dec. 2008.

[16] H. Kim, J. Cho, J. Kim, S. Choi, K. Kim, J. Lee, K. Park, J. S. Pak, and J. Kim, “A Wideband On-Interposer Passive Equalizer Design for Chip-to-Chip 30-Gb/s Serial Data Transmission,” IEEE Trans. Components, Packag. Manuf. Technol., vol. 5, no. 1, pp. 28–39, Jan. 2015.

[17] A. Fejzuli, R. Kaarsberg, and N. Roldan, “Broadband amplifier gain slope equalization with a single passive component,” High Freq. Electron., vol. 5, no. 6, pp. 22–26, 2006.

[18] Microwaves 101. http://www.microwaves101.com/encyclopedias/gain-equalizers

[19] S.-F. Chao, W.-C. Lin, and C.-Y. Kuo, “Bandpass filter with tunable bandwidth using triple-mode H-type resonator,” in 2014 International Symposium on Next-Generation Electronics (ISNE), 2014, vol. 18, no. 12, pp. 1–3.

指導教授 林祐生(Yo-shen Lin) 審核日期 2015-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明