以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:24 、訪客IP:3.144.89.152
姓名 蔡昇翰(Sheng-Han Tsai) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 不同參數對燒結式熱管性能之影響研究 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 總熱阻與最大熱傳量為判別熱管性能之指標。本研究藉由改變熱管的參數探討各參數對熱管總熱阻與最大熱傳量之影響,並將計算過程撰寫為程式。由於現有之經驗式無法準確預測蕊材參數,因此程式中使用實驗結果取代蕊材經驗式做計算,並使用實驗修正程式結果,使程式結果更為準確。
本研究分別以水、甲醇、乙醇與丙酮為熱管之工作流體分析管長、管徑、蕊材厚度與工作溫度四種不同之熱管參數對性能之影響。由分析結果得知,管長愈長,對總熱阻並無顯著影響,但最大熱傳量隨管長增加而降低。管徑愈大,熱阻愈低,最大熱傳量愈大。工作溫度愈高,以水為工作流體的熱管,其熱阻些微降低,最大熱傳量則愈大。以甲醇、乙醇為工作流體的熱管熱阻與最大熱傳量皆增加。但以丙酮為工作流體的熱管熱阻則隨溫度升高而增加,最大熱傳量則些微降低。蕊材厚度愈厚熱阻愈大,但最大熱傳量也愈高。在工作流體部分,以水為工作流體的熱管熱阻最低,最大熱傳量最高。
摘要(英) Heat pipe performance can be analyzed by two parameters, namely, thermal resistance and maximum heat transfer rate. In this study these two parameters are varied by changing four kinds of heat pipe parameters (Pipe length, pipe diameter, working temperature and wick thickness) and working fluids (water, methanol, ethanol and acetone) then analyzed by developing interactive computer software. Since empirical correlation can’t predict wick permeability and porosity accurately, experiments are carried out to find these values. Also the software is modified in accordance with the heat pipe experimental results at different heat pipe parameters to improve the prediction capability of computer software.
The heat pipe analysis results show that larger pipe length has no obvious effect on thermal resistance but reduces the maximum heat transfer rate. Larger pipe diameter, reduces the thermal resistance but increases the maximum heat transfer rate. Higher working temperature reduces thermal resistance but increases the maximum heat transfer rate when working fluid is water. For methanol and ethanol, as working temperature increases, thermal resistance increases and it also increases the maximum heat transfer rate. For acetone, as working temperature increases, thermal resistance increases but it reduces the maximum heat transfer rate. While for the case of wick thickness, as the wick thickness increases, both thermal resistance and maximum heat transfer rate increases. The result of working fluid analysis shows that except for water as working fluid, all other fluids has higher thermal resistance and lower maximum heat transfer rate.
關鍵字(中) ★ 熱管
★ 熱傳性能
★ 總熱阻
★ 熱傳極限
★ 最大熱傳量關鍵字(英) ★ heat pipe
★ thermal performance
★ total thermal resistance
★ heat transfer limitations
★ maximum heat transfer rate論文目次 摘要-------------------------------------i
Abstract--------------------------------ii
致謝-------------------------------------iv
目錄-------------------------------------v
表目錄-----------------------------------viii
圖目錄-----------------------------------ix
符號說明---------------------------------xi
第一章 前言--------------------------------1
1.1 研究背景與動機 --------------------------1
1.2 研究目的-------------------------------5
第二章 文獻回顧-----------------------------6
2.1 不同參數對熱管性能的影響------------------6
2.2 熱管熱阻-------------------------------10
2.1.1蒸發段徑向管壁熱阻(Rpe)-----------------12
2.1.2蒸發段之流體-蕊材結合熱阻(Rwe)-----------12
2.1.3蒸發段液汽介面蒸發熱阻(Rie)--------------13
2.1.4 絕熱段蒸汽部分之熱阻(Rv)----------------16
2.1.5 軸向管壁傳導熱阻(Rpa)-------------------17
2.1.6 軸向之流體-蕊材結合熱阻(Rwa)-------------18
2.1.7冷凝段液汽介面冷凝熱阻(Ric)---------------18
2.1.8 冷凝段之流體-蕊材結合熱阻(Rwc)-----------19
2.1.9 冷凝段徑向管壁熱阻(Rpc)-----------------19
2.3 最大熱傳量-------------------------------20
2.2.1 毛細極限(qs)---------------------------20
2.2.2 黏性極限(qv)---------------------------23
2.2.3 沸騰極限(qb)---------------------------24
2.2.4 攜帶極限(qe)---------------------------26
2.2.5 音速極限(qs)---------------------------27
第三章 程式設計-------------------------------29
3.1 程式架構與流程----------------------------29
3.2 程式使用說明------------------------------39
第四章 程式修正與結果分析-----------------------43
4.1 蕊材孔隙率與滲透率量測----------------------43
4.1.1 孔隙率量測------------------------------44
4.1.2 滲透率量測------------------------------49
4.2 程式結果修正------------------------------54
4.3 各參數影響分析-----------------------------58
4.3.1 管長對熱管性能之影響----------------------58
4.3.2 管徑對熱管性能之影響----------------------60
4.3.3 工作溫度對熱管性能之影響-------------------61
4.3.4 蕊材厚度對熱管性能之影響-------------------63
第五章 結論與建議-------------------------------65
參考文獻---------------------------------------66
附錄-------------------------------------------69
參考文獻 [1] Golden Star Technical Services PVT. LTD., http://www.heatpipeindia.com/aboutus/co_profile.htm
[2] Zohuri, B., 2011, “Heat Pipe Design and Technology: A Practical Approach,” CRC Press, pp. 43-112.
[3] Manimaran, R., Palaniradja, K., Alagumurthi, N., Hussain, J., 2012, “Factors Affecting the Thermal Performance of Heat pipe-A Review,” Journal of Engineering Research and Studies, Vol. III, pp. 20-24.
[4] Sukchana, T., Jaiboonma, C., 2013, “Effect of Filling Ratio and Adiabatic Length on Thermal Efficiency of Long Heat Pipe Filled with R-134a, Energy Procedia,” Vol. 34, pp. 298-306.
[5] Mozumder, A.K., Akon, A.F., Chowdhury, M.S.H., Banik, S.C., 2010, “Performance of Heat Pipe for Different Working Fluids and Fill Ratios,” Journal of Mechanical Engineering, Vol. ME41, No. 2, pp. 96-102.
[6] Wong, S.C., 2012, “The Evaporation Mechanism in the Wick of Copper Heat Pipe,” Frontiers and Progress in Multiphase Flow, Springer.
[7] Peterson, G.P., 1994, “An Introduction to Heat Pipe: Modeling, Testing, and Applications,” John Wiley, New York, pp. 44-157.
[8] Dunn, P.D. and Reay, D.A., 1994, “Heat Pipes,” Pergamon, Oxford, pp. 28-106.
[9] Deng, D., Liang, D., Tang, Y., Peng, J., Han, X. and Pan M., 2013, “Evaluation of capillary performance of sintered porous wicks for loop heat pipe,” Experimental Thermal and Fluid Science, Vol. 50, pp. 1-9.
[10] Chi, S.W., 1976, “Heat Pipes Theory and Practice,” McGraw-Hill, New York.
[11] O’Neill, P.S. and Czikk, A.M., 1979, “Correlation of Nucleate Boiling from Porous Metal Films,” J.M. Chenoweth, J. Kaelis, J. Michael, S. Shenkman (eds), Advances in Enhanced Heat Transfer, ASME, pp. 53-60. Quoted in [22].
[12] Webb, R.L., 1994, “Principle of Enhanced Heat Transfer, Wiley Interscience,” pp. 453-454.
[13] Nusselt, W., 1916, “Die Oberflachenkondensation des Wasserdampfes,” Z. ver. Dtsch. Ing., 60, pp541-569. Quoted in [23].
[14] Tien, C.L., 1975, “Fluid Mechanics of Heat Pipes, Annual Review of Fliud Mechanics,” Vol. 7, pp.167-185.
[15] Busse, C.A., 1967, “Pressure Drop in the Vapor Phase of Long Heat Pipes,” Proceedings IEEE Conference of Thermionic Conversion Specialists, Palo Alto, California, pp. 391-398.
[16] Busse, C.A., 1973, “Theory of the Ultimate Heat Transfer Limit of Cylindrical Heat Pipes,” International Journal of Heat and Mass Transfer, Vol. 16, pp. 169-186.
[17] Faghri, A., 1995, “Heat Pipe Science and Technology,” Taylor and Francis, Washington, DC, pp. 115-264.
[18] Bergles, A.E. and Rohsenow, W.M., 1964, “The Determination of Forced-Convection Surface-Boiling Heat Transfer,” ASME Journal of Heat Transfer, Vol. 86, pp. 365-372.
[19] Cotter, T.P., 1967, “Heat Pipe Startup Dynamics,” Proceedings 1967 Thermionic Conversion Specialist Conference, Palo Alto, California, pp. 344-348. Quoted in [17].
[20] Kemme, J.E., 1967, “High Performance Heat Pipes,” Proceedings 1967 Thermionic Conversion Specialist Conference, Palo Alto, California. Quoted in [17].
[21] Levy, E.K., 1968, “Theoretical Investigation of Heat Pipes Operating at Low Vapor Pressures,” ASME Journal of Engineering for Industry, Vol. 90, pp.547-552.
[22] Poniewski, M.E. and Thome, J.R., 2008, “Nucleate Boiling on Micro-Structured Surfaces,” Heat Transfer Research Inc.(HTRI), USA.
[23] Collier, J.G. and Thome, J.R., 1994, “Convective Boiling and Condensation,” 3rd edition, Oxford science publication.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2015-8-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare