參考文獻 |
1. A. Fujishima, K. Honda, "Electrochemical photolysis of water at semiconductor electrode", Nature, Vol. 238, pp. 37, 1972.
2. J.H. Kennedy, K.W. Frese, Jr, "Photoelectrochemical reduction of aqueous carbon dioxide on P-type gallium phosphide in liquid junction solar cells", Nature, Vol. 257, pp. 115, 1978.
3. Y. Li , J. Z. Zhang , “Hydrogen generation from photoelectrochemical water splitting based on nanomaterials”, Laser Photonics Review , Vol. 4 , pp. 517, 2010.
4. D. A. Wheeler , G. Wang , Y. Ling , Y. Li , J. Z. Zhang , “Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties”, Energy & Environmental Science, Vol. 5 , pp. 6682, 2012.
5. M. Grätzel, “Photoelectrochemical cells”, Nature , Vol. 414 , pp. 338, 2001.
6. K. Sivula , F. Le Formal , M. Grätzel , “Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes”, Chemical & Sustainability , Vol. 4, pp. 432, 2011.
7. G. Wang, Y. Ling, Y. Li, “Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidationand other applications”, Nanoscale, Vol. 4 , pp. 6682, 2012.
8. T. Bak , J. Nowotny , M. Rekas , C. C. Sorrell , “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International Journal of Hydrogen Energy , Vol. 27, pp. 991, 2002.
9. G. Wang , Y. Ling , H. Wang , L. Xihong , Y. Li ,” Chemically modified nanostructures for photoelectrochemical water splitting”, Journal of Photochemistry and Photobiology C , Vol. 19 , pp. 35, 2014.
10. V.R. Satsangi, S. Kumari, A.P. Singh, R. Shrivastav, S. Dass, "Nanostructured materials for photoelectrochemical hydrogen production using sunlight", International Journal of Hydrogen Energy, Vol. 33, pp. 312, 2008.
11. 吳錦貞,I-III-VI/II-VI 族可見光應答光觸媒材料之光電化學分析與水分解產氫應用,博士論文,國立中正大學化學工程所,民國97年。
12. 林有銘,無所不在的環境清潔工奈米光觸媒,科學發展,402期, 33頁,民國95年。
13. 荘浩宇,陳東煌,取之不盡的太陽能光電化學反應,科學發展,437 期,65頁, 民國98年。
14. A. Kudo, Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chemistry Society, Vol. 38, pp. 253, 2009.
15. T. J. La Tempa, X. Feng, M. Paulose, C. A. Grimes, “Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties”, The Journal of chemical physics, Vol. 113, pp. 93, 2009.
16. J. H. Kennedy , M. Anderman , R. Shinar, “Photoactivity of doped α-Fe2O3 electrodes”, J. Electrochemical Society, Vol. 128 , pp. 237, 1981.
17. B. Klahr , S. Gimenez , F. Fabregat-Santiago , T. Hamann , J. Bisquert , “ Water oxidation at hematite photoelectrodes: The role of surface states”, Journal of the American Chemical Society, Vol. 134 , pp. 294, 2012.
18. I. Cesar , K. Sivula , A. Kay , R. Zboril , M. Grätzel , “Influence of feature Size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting”, Journal Physical Chemical , Vol. 772, pp. 113, 2009 .
19. Y. Q. Liang , C. S. Enache , R. van de Krol ,” Influence of Si dopant and SnO2 interfacial layer on the structure of the spray-deposited Fe2O3 films”, Chemical Physics Letters , Vol. 479, pp. 86, 2008.
20. J. A. Glasscock , P. R. F. Barnes , I. C. Plumb , N. Savvides , “Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si”, The Journal Physical Chemistry, Vol. 16477, pp. 111, 2007.
21. S. Kumari , A. P. Singh , D. Deva , R. Shrivastav , S. Dass , V. R. Satsangi, “Photoelectrochemical properties of Fe2O3-SnO2 films prepared by sol-gel method”, International Journal of Hydrogen Energy, Vol. 3985, pp. 35, 2010.
22. A. Pu , J. Deng , M. Li , J. Gao , H. Zhang , Y. Hao , J. Zhong , X. Sun, “Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency”, Journal of Materials Chemistr , Vol. 2491, pp. 2, 2014.
23. J. Liu , C. Liang , H. Zhang , Z. Tian , S. Zhang, “General strategy for doping impurities (Ge, Si, Mn, Sn, Ti) in hematite nanocrystals”, The Journal Physical Chemistry, Vol.4986 , pp. 116, 2012 .
24. R. Franking , L. Li , M. A. Lukowski , F. Meng , Y. Tan , R. J. Hamers ,S. Jin , “Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation” , Energy & Environmental Science, Vol. 500, pp. 6, 2013.
25. S. Shen , C. X. Kronawitter , D. A. Wheeler , P. Guo , S. A. Lindley ,J. Jiang , J. Z. Zhang , L. Guo , S. S. Mao, “Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth”, Journal of Materials Chemistry, Vol. 14498, pp. 1 , 2013.
26. J. S. Jang , J. Lee , H. Ye , F. R. F. Fan , A. J. Bard , “Rapid Screening of Effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties”, The Journal Physical Chemistry , Vol. 6719, pp. 113 , 2009.
27. M. Gaudon , N. Pailhe , J. Majimel , A. Wattiaux , J. Abel , A. Demourgues , “Influence of Sn4+ and Sn4+/Mg2+ doping on structural features and visible absorption properties of α-Fe2O3 hematite”, Journal of Solid State Chemistry, Vol.2101, pp. 183 , 2010 .
28. V. M. Aroutiounian , V. M. Arakelyan , G. E. Shahnazaryan , H. R. Hovhannisyan , H. Wang , “Photoelectrochemistry of tin-doped iron oxide electrodes”, Solar Energy, Vol. 1369, pp. 81, 2007.
29. L. Xi , S. Y. Chiam , W. F. Mak , P. D. Tran , J. Barber , S. C. J. Loo , L. H. Wong , “A novel strategy for surface treatment on hematite photoanode for efficient water oxidation”, Chemical Science, Vol. 164, pp. 4, 2013 .
30. J. S. Jang , K. Y. Yoon , X. Xiao , F. R. F. Fan , A. J. Bard , “Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy: Effects of Ag−Fe2O3 nanocomposite and Sn doping”, Chemistry of Material, Vol. 4803, pp. 21, 2009.
31. A. B. D. Sartoretti, C. J. Solarska, R. Rutkowska, "Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes.," The Journal of chemical physics, Vol. 109, pp. 13685, 2005.
32. C. J. Sartoretti , B. D. Alexander , R. Solarska , W. A. Rutkowska ,J. Augustynski , R. Cerny , “Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping”, Journal of the American Chemical Society, Vol. 109 , pp. 13685, 2005 .
33. X. Z. Li, F. B. Li, “Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment”, Environmental Science and Technology, Vol. 35, pp. 2381, 2001.
34. S. Kim, S. J. Hwang, W. Choi, “Visible light active platinum-ion-doped TiO2 photocatalyst”, The Journal of Physical Chemistry, Vol. 109, pp. 24260, 2005.
35. A. Kay, I. Cesar, M.Gratzel, “New benchmark for water photooxidation by nanostructured α-Fe2O3 films”, Journal of the American Chemical Society, Vol. 128, pp. 15714, 2006.
36. M. Rajendran, M. G. Krishna, A .K. Bhattacharya, “Structure and thickness dependent optical properties of nanocrystalling haematite thin films”, International Journal of Modern Physics, Vol. 15, pp. 201, 2001.
37. V. R. Satsangi, S. Kumari, A. P. Singh, R. Shrivastav, S. Dass, “Nanostructured hematite for photoelectrochemical generation of hydrogen”, International Journal of Hydrogen Energy, Vol. 33, pp. 312, 2008.
38. C. J. Sartoretti, B. D. Alexander, R. Solarska, I. A. Rutkowska, J. Augustynski, “Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes”, The Journal of Physical Chemistry,Vol. 109, pp. 13685, 2005.
39. K. S. Alan, Y. S. Hu, A. J. Forman, G. D. Stucky, E. W. McFarland, “ Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic”, Journal of Physical Chemistry, Vol. 112, pp. 15900, 2008.
40. Y. S. Hu, K. S. Alan, A. J. Forman, D. Hazen, J. N. Park, E. W. McFarland, “Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting”, Chemistry of Materials Science, Vol. 20, pp. 3803, 2008.
41. M. Rajendran, M. G. Krishna, A. K. Bhattacharya, “Structure and thickness dependent optical properties of nanocrystalling haematite thin films”, International Journal of Modern Physics, Vol. 15, pp. 201, 2001.
42. N. C. Pramanik, T. I. Bhuiyan, M. Nakanishi, T. Fujii, J. Takada, S. Seok, “Synthesis and characterization of cerium substituted hematite by sol–gel method”, Materials Letters , Vol. 59, pp. 3783, 2006.
43. W. Luo, T. Yu, Y. Wang, Z. Li, J. Ye, Z. Zou, “Enhanced photocurrent-voltage characteristics of WO3/Fe2O3 nano-electrodes”, Journal of Physics , Applied Physics, Vol. 40, pp. 1091, 2007.
44. L. S. Flavio, P. L. Kirian, A. P. Nascente, R. L. Edson, “Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting”, Solar Energy Materials & Solar Cell, Vol. 93, pp. 362, 2009.
45. K. Sivula, R. Zboril, F. L. Formal, R. Robert, A. Weidenkaff, J.Tucek, J. Frydrych, M. Gra¨tzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach”, Journal of American Chemical Society, Vol. 132, pp. 7436, 2010.
46. L. Wang, C. Y. Lee, “Influence of annealing temperature on photoelectrochemical water splitting of α-Fe2O3 films prepared by anodic deposition”, Electrochimical Acta , Vol. 91, pp. 307, 2013.
47. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting”, Nano Letter, Vol. 11, pp. 2119, 2011.
48. C. D. Bohn, A. K. Agrawal, E. C. Walter, M. D. Vaudin, A. A. Herzing, P. M. Haney, A. A. Talin, V. A. Szalai, “Effect of tin doping on α-Fe2O3 photoanodes for water splitting” The Journal Of physical chemistry, Vol. 116, pp. 15290, 2012.
49. H. Uchiyama, M. Yukizawa, H. Kozuka, “Photoelectrochemical properties of Fe2O3-SnO2 films prepared by sol-gel method”, The Journal Of physical chemistry, Vol. 115, pp. 7050, 2011.
50. J. Frydrych, L. Machala J. Tucek, K. Siskova, J. Filip, J. Pechousek, K. Safarova, M. Vondracek, J. H. Seo, O. Schneeweiss, M. Gr€atzel, K. Sivula, R. Zboril, “Facile fabrication of tin-doped hematite photoelectrodes – effect of doping on magnetic properties and performance for light-induced water splitting”, Journal of Materials Chemistry, Vol. 22, pp. 23232, 2012.
51. Y. Ling, Y. Li, “Review of Sn-doped hematite nanostructures for photoelectrochemical water splitting”, Particle & Particle Systems Characterization, Vol. 31, pp. 1113, 2014.
52. M. Mohapatra, S. Layek, S. Anand, H. C. Verma, B. K. Mishra, “Structural and magnetic properties of Mg-doped nano-α-Fe2O3 particles synthesized by surfactant mediation–precipitation technique”, Physical Status Solid, Vol. 250, pp. 213, 2013.
|