博碩士論文 102323022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.145.179.147
姓名 徐健洲(Shiu-Jian Jhou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 MOCVD晶圓載盤設計與分析
(Design and Analysis of Wafer Carrier for MOCVD)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在有機金屬氣相沉積 (MOCVD)反應的實際長晶過程中,由於加熱器的配置會產生晶圓表面溫度分布不均與晶圓翹曲的問題,本研究利用有限元素分析法(FEM),計算晶圓表面在長晶過程中的溫度分布與薄膜成長後系統降至常溫的晶圓翹曲量,探討承載盤及晶圓的溫度分布對於氮化鎵薄膜磊晶品質及薄膜翹曲的影響。

考慮一般業界經驗,要獲得品質良好的薄膜,長晶時晶圓表面最大溫差必須小於1 K;本研究藉由改變晶圓及承載盤部分區域之間的熱傳條件來設計承載盤,以實現使2吋及8吋晶圓表面溫度更均勻,並且減少2吋晶圓在製程後降至常溫之翹曲量的目的。此外,亦考慮由於晶圓放置誤差造成溫度輸入或接觸狀況改變,對於晶圓表面在長晶階段的溫度分布及常溫時晶圓翹曲量之影響。同時藉由前人以不同厚度氮化鎵磊晶在藍寶石晶圓的翹曲量測實驗與本研究的模擬結果做比對,確認模擬結果之晶圓翹曲及晶圓曲率半徑與相對應的實驗結果十分接近,驗證本研究所建立模型的有效性,故可適用於預測晶圓表面在長晶階段的溫度分布及常溫時的翹曲量。

本研究先根據晶圓放置於未改良設計之承載盤上的晶圓表面溫度分布,考慮將設計的凹槽建立在晶圓高溫區域下方的承載盤支撐面上,藉此改變承載盤與晶圓之間的熱傳條件,讓晶圓表面高溫區域的溫度降低,以此方式降低2吋晶圓表面溫度差及翹曲量。將此設計應用於8吋晶圓的承載盤上也再次證明了本研究的凹槽設計可以有效地降低晶圓表面在長晶階段時的溫度差,也能容忍一定程度的溫度輸入偏差,包括溫度輸入大於或小於原本的值2 K、溫度輸入分布沿徑向遠離或靠近旋轉中心、較大的溫度輸入差等。

本研究也同時結合了2吋反向預翹曲晶圓及具有相同彎曲形狀支撐面及凹槽的承載盤,使晶圓於長晶時的表面溫度小於1 K,同時也幾乎消弭了原本在常溫時的翹曲量。但是由於預翹曲的晶圓與彎曲支撐面之間的接觸狀況對於晶圓表面在長晶時的溫度較敏感,若因製造上的誤差使兩曲面之曲率相異而造成非接觸的區域過大,其改善效果則會受到限制。

摘要(英) The aim of this work is using finite element analysis (FEM) to systematically study the temperature distribution at operation stage and warpage at shutdown stage on the top surface of wafer in MOCVD process. The effects of temperature input and substrate holder design are considered. According to industrial practice, it is acceptable that the maximum temperature difference on the wafer surface is less than 1 K. Groove designs are applied on the substrate holder to improve the thermal conditions for a better temperature uniformity at operation stage and smaller warpage on the wafer at shutdown stage. In addition, the combined effects of initial wafer bow and groove design for substrate holder are also investigated. A reasonable agreement of the simulations with the previous experimental measurements validates the constructed FEM model which is effective in assessment of the temperature distribution and warpage on the wafer surface in the film-substrate system of MOCVD.

According to the temperature distribution on the wafer surface placed on an original, plain 2-in substrate holder, designed grooves are made on the supporting surface of a modified substrate holder and improve the temperature uniformity with a maximum temperature difference less than 1 K. The wafer bow is also reduced by such groove designs. A similar approach is also applied to an 8-in substrate holder and effectively reduces the maximum temperature difference on the wafer at operation stage. The 2-in grooved substrate holder is capable of tolerating the given temperature deviations for a maximum temperature difference on the wafer surface to be less than or around 1 K, such as changing the temperature input with a slight increment or decrement, shifting the temperature input curve toward or away from the center of the susceptor, and enlarging the temperature difference in the temperature input.

The combination of a 2-in bow wafer with a substrate holder having a curved supporting surface and designed grooves effectively makes the temperature difference at operation stage on the wafer surface less than 1 K and almost eliminates the warpage of wafer at shutdown stage. However, the design for a bow wafer working together a curved substrate holder with designed grooves is sensitive to the contact condition between bow wafer and substrate holder.

關鍵字(中) ★ 旋轉載盤設計
★ 晶圓翹曲
★ 晶圓表面溫度
★ 有機化學氣相沉積
關鍵字(英) ★ MOCVD
★ Wafer bow
★ Temperature distribution
★ substrate carrier design
論文目次 LIST OF TABLES VII

LIST OF FIGURES VIII

1. INTRODUCTION 1

1.1 MOCVD System 1

1.1.1 Principles of growing epitaxy layer with MOCVD 1

1.1.2 MOCVD reactor 2

1.2 Literature Review 6

1.3 Purpose 9

2. MODELING 12

2.1 Modeling for Temperature Distribution 12

2.1.1 Finite element model and material properties 12

2.1.2 Thermal boundary conditions 15

2.2 Modeling for Wafer Bow 17

2.2.1 Finite element model 17

2.2.2 Verification of numerical model 18

3. RESULTS AND DISCUSSION 20

3.1 Temperature Distribution at Operation Stage 20

3.1.1 Practice of groove design 20

3.1.2 Effect of groove design in 2-in substrate holder 20

3.1.3 Effect of groove design in 8-in substrate holder 23

3.1.4 Effects of temperature deviation for the modified 2-in substrate holder 25

3.2 Wafer Warpage at Shutdown Stage 28

3.2.1 Comparison between different substrate holder designs for 2-in wafer 28

3.2.2 Combined effects of initial bow of wafer and designed grooves of substrate holder 29

3.2.3 Effects of deviation of contact area in bow wafer 30

4. CONCLUSIONS 33

REFERENCES 35

TABLES 38

FIGURES 42



參考文獻 1. Metalorganic Vapor Phase Epitaxy, Wikipedia, http://en.wikipedia.org/wiki/Metalorganic_vapour_phase_epitaxy, accessed on March 28, 2015.

2. M. Razeghi, The MOCVD Challenge, Volume 2: A Survey of GaInAsP-GaAs for Photonic and Electronic Device Applications, Taylor & Francis, London, UK, 1995.

3. A. K. Georgieva, U. Forsberg, I. G. Ivanov, and E. Janzen, “Uniform Hot-Wall MOCVD Epitaxial Growth of 2 Inch AlGaN/GaN HEMT Structures,” Journal of Crystal Growth, Vol. 300, pp. 100-103, 2007.

4. N. Kaneno, H. Kizuki, M. Takemi, and K. Mori, “Substrate Holder for MOCVD,” US Patent, No. 5,782,979, June 13, 1995.

5. Z. L. Fang, Semiconductor Lighting Technology, Publishing House of Electronics Industry, Beijing, China, 2009.

6. H. Jurgensen, J. Kappeler, S. Johannes, and G. K. Strauch, “CVD Coating Device,” US Patent, No. 7,067,012, March 3, 2003.

7. K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques, William Andrew, Norwich, United States, 2001.

8. G. S. Tompa, A. Colibaba-Evulet, J. D. Cuchiaro, L. G. Provost, D. Hadnagy, T. Davenport, S. Sun, F. Chu, G. Fox, and R. J. Doppelhammer, “MOCVD Process Model for Deposition of Complex Oxide Ferroelectric Thin Film,” Integrated Ferroelectric, Vol. 36, pp. 135-152, 2001.

9. B. Mitrovic, A. Gurary, and L. Kadinski, “On the Flow Stability in Vertical Rotating Disc MOCVD Reactors under a Wide Range of Process Parameters,” Journal of Crystal Growth, Vol 287, pp 656-663, 2005.

10. M. Dauelsberg, E. J. Thrush, B. Schineller, and J. Kaeppeler, Optoelectronic Devices: III Nitrides, Elsevier Ltd., Amsterdam, Netherlands, 2005.

11. F. Lu, D. Lee, D. Byrnes, E. Armour, and W. Quinn, “Blue LED Growth from 2 Inch to 8 Inch,” Science China Technological Sciences, Vol. 54, pp. 33-37, 2011.

12. T. L. Chou, S. Y. Yang, and K. N. Chiang, “Overview and Applicability of Residual Stress Estimation of Film–Substrate Structure,” Thin Solid Films, Vol. 519, pp. 7883-7894, 2011.

13. H. Aida, D. S. Lee1, M. Belousov1, and K. Sunakawa, “Effect of Initial Bow of Sapphire Substrate on Substrate Curvature During InGaN Growth Stage of Light Emitting Diode Epitaxy,” Japanese Journal of Applied Physics, Vol. 51, pp. 1-6, 2012.

14. G. B. Stringfellow, Organometallic Vapor Phase Epitaxy: Theory and Practice, Academic Press, Waltham, USA, 1989.

15. T. Nishizawa, “Vapor Phase Growth Susceptor and Vapor Phase Growth Apparatus,” US Patent, No. 2010/0282170 A1, November 12, 2009.

16. G. E. Egami, B. H. Burrows, and K. Maung, “Substrate Carrier Design for Improved Photoluminescence Uniformity,” US Patent, No. 2011/0049779 A1, March 3, 2011.

17. H. I. Jung, S. D. Yoo, and W. S. Lee, “Susceptor and Chemical Vapor Deposition Apparatus Including the Same,” US Patent, No. 2009/0277387 A1, November 12, 2009.

18. P. S. Locke, S. G. Malhotra, F. R. McFeely, A. H. Simon, and J. J. Yuras, “Method for Depositing Metal Films onto Substrate Surfaces Utilizing a Chamfered Ring Support,” US Patent, No. 6,660,330 B2, December 9, 2003.

19. C. H. Kim, “Wafer Carrier with Pocket,” US Patent, No. 2014/0084529 A1, March 27, 2014.

20. C. Y. Chang, Y. M. Lo, C. Shen, and Y. C. Tseng, “Wafer Carrier,” US Patent, No. 2013/0092595 A1, April 18, 2013.

21. A. Spiro, P. Valley, and W. H. White, “Susceptor Structure in Silicon Epitaxy,” US Patent, No. 3,539,759, November 10, 1970.

22. Z. Li, H. Li, J. Zhang, J. Li, H. Jiang, X. Fu, Y. Han, Y. Xia, Y. Huang, J. Yin, L. Zhang, and S. Hu, “A Susceptor with Partial-torus Groove in Vertical MOCVD Reactor by Induction Heating,” International Journal of Heat and Mass Transfer, Vol. 75, pp. 410-413, 2014.

23. Z. Li, H. Li, J. Zhang, J. Li, H. Jiang, X. Fu, Y. Han, Y. Xia, Y. Huang, J. Yin, L. Zhang, and S. Hu, “A Susceptor Heating Structure in MOVPE Reactor by Induction Heating,” Applied Thermal Engineering, Vol. 67, pp. 423-428, 2014.

24. S.-W. Guo, “Analysis of Structural Stress in Susceptor and Warpage of Film-Substrate System for an MOCVD Reactor,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2014.

25. Carbon-Graphite Materials, Azom, http://www.azom.com/properties.aspx?ArticleID=516, accessed on May 20, 2015.

26. Sapphire (Al2O3), MaTeck, http://www.mateck.de/index.php?option=com_content&view=article&id=66&Itemid=21, accessed on May 20, 2015.

27. D. Strauch, Landolt-Börnstein – Group III Condensed Matter, Springer, Berlin, Germany, 2011.

28. J.-F. Lu, “Analysis of Uniform Temperature Distribution in MOCVD Susceptor by High Frequency RF Induction Heater,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2014.

29. Emissivity Table, ThermoWorks,

http://www.thermoworks.com/emissivity_table.html, accessed on June 5, 2015.

30. M.-T. Chen, “Numerical Simulation of the Flow, Temperature, and Solute Fields for Growing the Larger Sapphire Crystal in Czochralski System,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2014.

31. C. H. Lee and S. H. Kong, “Gallium Nitride Thin Film on Sapphire Substrate Having Reduced Bending Deformation,” US Patent, No. 7,592,629, April 19, 2007.

32. D. Sengupta, S. Mazumder, W. Kuykendall, and S. A. Lowry, “Combined ab Initio Quantum Chemistry and Computational Fluid Dynamics Calculations for Prediction of Gallium Nitride Growth,” Journal of Crystal Growth, Vol. 279, pp. 369-382, 2005.

33. H. Aida, N. Aota, H. Takeda, and K. Koyama, “Control of Initial Bow of Sapphire Substrates for III-Nitride Epitaxy by Internally Focused Laser Processing,” Journal of Crystal Growth, Vol. 361, pp. 135-141, 2012.

指導教授 林志光(Lin-Chih Kuang) 審核日期 2015-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明