博碩士論文 102326027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.117.142.248
姓名 徐瑋廷(Wei-Ting Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以釩鈦SCR觸媒轉換元素汞及去除NO與Dioxin之效率探討
(Conversion and reduction of multipollutant (Hg0/NO/dioxin) by V2O5-WO3/TiO2 catalysts from simulated flue gas streams of coal-fired power plant)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在建立含汞氣流產生系統,以測試不同氣流條件下傳統SCR觸媒針對元素態汞之轉化效率,並進一步掌握NO轉化率及戴奧辛之去除效率。實驗室測試結果指出氣流中添加NH3/NO會降低V2O5/WO3/TiO2觸媒對汞的轉化能力,而隨V2O5/WO3之含量增加汞之轉化效率明顯上升。此外,本研究進一步模擬實廠煙道氣之條件,於氣流中添加水氣、HCl、CO2、SO2等,結果指出三種板狀觸媒中,以V0.26W3.05TiO2觸媒對汞與NO轉化率較差,V1.52W5.11TiO2觸媒具有最佳的汞轉化效率。測試結果顯示元素態汞濃度降低時其轉化效率亦隨之下降,當入口汞濃度為6 g/m3時,V0.26W3.05TiO2觸媒之轉化率最低,僅有6%,推測該觸媒較容易受到水氣及質傳限制影響而抑制其汞轉化效率。為了探討實廠添加HCl與否之影響,本研究亦測試未添加HCl時之元素汞轉化率,結果顯示元素汞之轉化效率明顯下降,主因是無氯源之情況下,元素汞不易吸附於觸媒表面進行轉化;此外,隨著HCl濃度提升觸媒汞轉化活性明顯上升,當HCl添加濃度超過25 ppm時,三種觸媒的汞轉化活性僅些微提升。比較V1.52W5.11TiO2與V0.26W3.05TiO2觸媒,V1.52W5.11TiO2觸媒在汞轉化效率、De-NOx及De-dioxin皆優於V0.26W3.05TiO2,未來須審慎評估不同觸媒之適用性及組成成分的影響。戴奧辛去除效率測試結果顯示,V0.26W3.05TiO2觸媒、V0.66W5.86TiO2及V1.52W5.11TiO2觸媒對戴奧辛之去除效率分別達50%、57%及65%。值得注意的是高氯數戴奧辛物種去除效率普遍高於低氯數戴奧辛物種,初步推測係觸媒在較高之空間流速(34000 hr-1),對於高氯數物種的脫氯不完全導致低氯數物種有生成之情形。本研究亦測試擔載V2O5/WO3/TiO2觸媒之濾布,在添加水氣之條件下,其元素汞、NO轉化率為53%、47%。此外,利用積分型反應器結合Eley-Rideal mechanism求取釩鈦板狀觸媒應用於元素汞轉化的活化能(Ea)和碰撞因子(A),經由實驗數據計算結果顯示,此類觸媒的活化能為10.7-14.2 kJ/mole,而碰撞因子為25.2-39.0 sec-1。
摘要(英) This study aims to investigate the effectiveness of selective catalytic reduction (SCR) V2O5-WO3/TiO2 catalysts for the conversion or removal of multi-pollutant (i.e., Hg0/dioxin/NO) from simulated flue gas streams of coal-fired power plant. A continuous mercury-containing gas stream generation system is established for evaluating the conversion efficiency of elemental mercury by various catalyst. The variation of inlet Hg0 concentrations is within two standard deviations. Experimental results indicate that the conversion efficiency of elemental mercury is reduced by adding NH3 into the stream. In addition, water vapor, HCl, CO2 and SO2 are also added to simulate the flue gas composition of the coal-fired power plant. The results indicate that plate-type V0.26W3.05TiO2 catalyst has the lowest efficiency for mercury and NO conversion. On the other hand, V1.52W5.11TiO2 catalyst has the highest Hg0/NO conversion efficiency of these catalysts. When the inlet elemental mercury concentration is decreased to 6 μg/m3, the conversion efficiency of mercury achieved with V0.26W3.05TiO2 is only 6%. It may be attributed to the competition for active sites available to Hg0. It also indicated that the mass transfer plays an important role in convering elemental mercury. Furthermore, this study also investigates the influence of HCl in the stream for mercury conversion. The results show that the conversion efficiency of elemental mercury is significantly increased after adding HCl into the stream. It indicates that the presence of chlorine species is beneficial for elemental mercury conversion. However, when HCl concentration exceeds 25 ppm only slight improvement of mercury conversion activity is observed. This study also compares the effectiveness of V1.52W5.11TiO2 and V0.26W3.05TiO2 catalysts, and it shows that V1.52W5.11TiO2 catalyst has higher efficiencies for multi-pulltant control. Moreover, the dioxin removal efficiencies achieved with V0.26W3.05TiO2, V0.66W5.86TiO2 and V1.52W5.11TiO2 are 50%, 57% and 65%, respectively. It is worth noting that the removal efficiency of highly chlorinated PCDD/Fs is slightly higher than that of low chlorinated PCDD/Fs. It may be attributed to the incomplete dechlorination of highly chlorinated PCDD/Fs with a high gas hourly velocity space (34,000 hr-1). The activation energies and frequency factors of elemental mercury conversion are calculated as 10.7-14.2 kJ/mole and 25.2-39.0 sec-1, respectively. This study also evaluates the effectiveness of catalytic filter in converting elemental mercury (with V2O5/WO3/TiO2 catalyst). Results indicate that elemental mercury and NO conversions achieved with catalyst filtration are 53% and 47%, respectively, as NH3/NO is controlled at 0.6.
關鍵字(中) ★ 元素汞
★ SCR
★ 多重污染物
★ 戴奧辛
★ 氮氧化物
關鍵字(英) ★ elemental mercury
★ SCR
★ multiple pollutants
★ dioxins
★ nitrogen oxides
論文目次 中文摘要 I

Abstract II

目錄 V

圖目錄 VIII

表目錄 XI

第一章 研究緣起 1

1.1 前言 1

1.2 研究目標 2

第二章 文獻回顧 3

2.1 汞的基本介紹 3

2.2 汞之物化特性介紹 3

2.3 全球汞排放量 4

2.3.1 汞排放來源 4

2.4 各國汞管制相關法規 5

2.4.1 台灣 5

2.4.2 美國 6

2.4.3 加拿大 7

2.4.4 中國 9

2.4.5 德國 10

2.5 汞對人體健康的影響和危害性 10

1. 元素汞 10

2. 有機汞 11

3. 無機汞 11

2.6 汞污染來源及其流佈 13

2.7 燃煤之汞排放特性 14

2.8 燃煤程序之汞控制技術 18

2.8.1 添加抑制劑 20

2.8.2 活性碳注入法 21

2.8.3 濕式洗滌法 21

2.8.4 選擇性觸媒還原法(SCR) 22

2.9 焚化程序之汞排放特性 24

2.10 焚化程序之汞控制技術 25

2.10.1 觸媒濾袋技術(Catalytic filter) 25

2.11 觸媒催化之原理與反應機制 28

2.12 觸媒組成與形狀結構之探討 29

2.12.1 觸媒組成成分 29

2.12.2 觸媒形狀結構 30

2.13 觸媒去除污染物之應用 30

2.13.1 元素汞轉化 31

2.13.2 De-Dioxins 33

2.13.3 De-NOx 34

2.14 SCR設備對元素汞轉化之可行性 39

2.14.1 NH3/NO對汞轉化效率之影響 40

2.14.2 HCl對汞轉化效率之影響 42

2.14.3 SO2對汞轉化效率之影響 45

2.14.4 不同氣流條件下之元素汞濃度變化 46

2.14.5 觸媒成分組成與汞轉化效率之關係 47

2.15 觸媒反應動力研究 50

2.15.1 Eley-Rideal mechanism kinetic model 50

2.15.2 Plug Flow Reactor 51

2.15.3 Plug Flow Reactor積分型反應器 51

第三章 研究方法 53

3.1 實驗設計與流程 53

3.2 實驗系統架設 55

3.2.1 含汞氣流系統穩定性測試 55

3.2.2 觸媒轉化汞系統 55

3.2.3 板狀觸媒反應器 57

3.2.4 觸媒濾布反應器 58

3.2.5 De-dioxin系統 59

3.3 實驗設備、試劑及材料 60

3.3.1 實驗材料 60

3.3.2 實驗設備 61

3.3.3 實驗藥品 61

3.3.4 實驗溶劑 62

3.3.5 氣體鋼瓶 63

3.4 汞檢測、採樣及分析 63

3.4.1 汞檢測方法 63

3.5 戴奧辛分析方法 67

3.7 其他儀器分析原理 72

3.7.1 BET比表面積分析儀 72

3.7.2 X光繞射分析儀(XRD) 73

3.7.3 掃描式電子顯微鏡分析(SEM) 74

3.7.4 能量分散光譜儀(EDS) 75

3.7.5 X-射線光電子光譜(XPS) 75

3.7.6 穿透式電子顯微鏡(TEM) 76

第四章 結果與討論 77

4.1 穩定性測試 77

4.1.1 連續汞氣流產生系統 77

4.1.2 不同氣流條件汞濃度測試 78

4.1.3 不同汞濃度調整測試 79

4.2 觸媒基本物性試驗 81

4.2.1 BET 81

4.2.2 XRD 81

4.2.3 SEM 82

4.2.4 EDS 83

4.2.5 XPS 84

4.2.6 TEM 88

4.3 板狀觸媒初步測試 88

4.3.1 溫度與汞轉化效率之關係 89

4.3.2 O2與汞轉化率之關係 91

4.3.3 不同進氣條件之汞轉化效率 92

4.3.4 NH3/NO與汞轉化效率之關係 93

4.3.5 板狀觸媒之汞轉化效率 93

4.3.6 中、低汞濃度之轉化效率 98

4.3.7 HCl與汞轉化率之關係 102

4.3.8 汞轉化活性 103

4.3.9 積分反應器結合Eley-Rideal mechanism求取活化能 105

4.3.10 觸媒濾布 106

4.3.11 戴奧辛去除測試 108

第五章 結論與建議 111

5.1 結論 111

5.2 建議 112

附件一 排氣含水率計算公式 122

附件二 EDS元素分析Linescan圖 123

附件三 XPS元素分析Survey Scan原始數據 126



參考文獻 Benson, S.A., Laumb, J.D., Crocker, C.R. and Pavlish, J.H. “SCR catalyst performance in flue gases derived from subbituminous and lignite coals”, Fuel Processing Technology 86, pp. 577-613, 2005.

Bonte, J.L., Fritsky, K.J., Plinke, M.A. and Wilken, M., “Catalytic destruction of PCDD/F in a fabric filter: Experienceata municipal waste incinerator in Belgium”, Waste Management, vol. 22, pp. 421-426, 2002.

Boyano, A., Lombardo, N., Gálvez, M.E., Lázaro, M.J. and Moliner, R., “Vanadium-loaded carbon-based monoliths for the on-board NO reduction: Experimental study of operating conditions”, Chemical Engineering Journal, vol.144, pp. 343-351, 2008.

Bullock, E. L., Patthey, L. and Steinemann, S. G., “Clean and hydroxylated rutile TiO2 (110) surfaces studied by X-ray photoelectron spectroscopy”, Surface science, vol. 352, pp. 504-510, 1996.

Byrne, H., Khan, K., Gross C., Mazyck, D., Naylor W., Harrison, W. and Altman R., “Performance of non-halogenated activated carbon for mercury compliance”, Power Plant Air Pollutant Control, pp. 28, 2012.

Chang, R. and Owens, D., “Developing mercury removal methods for power plants”, EPRI J., pp. 46-49, 1994.

Chen, L., Li, J. and Ge, M., “Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3”, The Journal of Physical Chemistry C, vol. 113, pp. 21177-21184, 2009.

Chen, L., Liu, M., Fan, R., Ma, S., Xu, Z., Ren, M. and He, Q., “Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta, South China”, Science of the Total Environment, vol. 447, pp. 396-402, 2013.

Chiu, C.H., Hsi, H.C. and Lin, H.P., “Multipollutant control of Hg/SO2/NO from coal-combustion flue gases using transition metal oxide-impregnated SCR catalysts”, Catalysis Today, vol. 245, pp. 2-9, 2015.

Crist, B. V., “Handbooks of monochromatic XPS spectra”, XPS International, 1999.

Eom, Y., Jeon, S.H., Ngo, T.A., Kim, J. and Lee, T.G., “Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst”, Catalysis Letters, vol. 121, pp. 219-225, 2008.

Eswaran, S. and Stenger, H.G., “Understanding mercury conversion in selective catalytic reduction (SCR) catalysts”, Energy & Fuels, vol. 19, pp. 2328-2334, 2005.

Furrer, J., Deuber, H., Hunsinger, H., Kreisz, S., Linek, A., Seifert, H., Stöhra, J., Ishikawa, R. and Watanabe, K., “Balance of NH3 and behavior of polychlorinated dioxins and furans in the course of the selective non-catalytic reduction of nitric oxide at the TAMARA waste incineration plant”, Waste Management, vol. 18, pp. 417-422, 1998.

Galbreath, K.C. and Zygarlick, C.J. “Mercury transformation in coal combustion flue gas”, Fuel Processing Technology, pp. 65-66, 289-310, 2000.

Gao, W., Liu, Q., Wu, C. Y., Li, H., Li, Y., Yang, J. and Wu, G., “Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst”, Chemical Engineering Journal, vol. 220, pp. 53-60, 2013.

Gochfeld, M., “Cases of mercury exposure, bioavailability and absorption”, Ecotoxicol Environ Safety, vol. 56, pp. 174-179, 2003.

Gretta, W., Morita, I. and Moffett, J., “Mercury oxidation across SCR catalyst at LG&E’s Trimble County unit 1”, In Power Plant Air Pollutant Control Mega Symposium, Baltimore, MD, 2006.

Hall, B., Lindqvist, O., Ljungstrom, E., “Mercury chemistry in simulated flue-gases related to waste incineration conditions”, Environmental Science & Technology, vol. 24, pp. 108-111, 1990.

He, S., Zhou, J., Zhu, Y., Luo, Z., Ni, M. and Cen, K., “Mercury oxidation over a vanadia-based selective catalytic reduction catalyst”, Energy & Fuels, vol. 23, pp. 253-259, 2008.

Hong, H.J., Ham, S.W., Kim, M.H., Lee, S.M. and Lee, J.B., “Characteristics of commercial selective catalytic reduction catalyst for the oxidation of gaseous elemental mercury with respect to reaction conditions”, Korean Journal of Chemical Engineering, vol. 27, pp. 1117-1122, 2010.

Hower, J.C., Robel T.L., Anderson C., Thomas, G.A., Clark C.L., “Characteristics of coal combustion products (CCP’s) from Kentucky power plants with emphasis on mercury content”, Fuel, 84, pp.1338-1350, 2005.

Hrdlicka, J.A., Seames, W.S., Mann, M.D., Muggli, D.S. and Horabik, C.A., “Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters”, Environmental Science & Technology, vol. 42, pp. 6677-6682, 2008.

Hung, P.C., Chang, S.H., Lin, S.H., Buekens, A. and Chang, M.B., “Pilot tests on the catalytic filtration of dioxins”, Environmental Science & Technology, vol. 48, pp. 3995-4001, 2014.

Ichihara, K. and Tyree, C. “Pilot scale study of mercury removal in CT-121 wet FGD,” Air Quality VII, Arlington, VA, 2009.

Jones, J. and J. R. H. Ross, “The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases”, Catalysis Today, vol. 35, pp. 97-105, 1997.

Kamata, H., Ueno, S. I., Naito, T., and Yukimura, A., “Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst”, Industrial & Engineering Chemistry Research, vol. 47, pp. 8136-8141, 2008b.

Kamata, H., Ueno, S.I., Naito, T., Yamaguchi, A. and Ito, S., “Mercury oxidation by hydrochloric acid over a VOx/TiO2 catalyst”, Catalysis Communications, vol. 9, pp. 2441–2444, 2008a.

Kamata, H., Ueno, S.I., Sato, N. and Naito, T., “Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas”, Fuel Processing Technology, vol. 90, pp. 947-951, 2009.

Kellie, S., Duan, Y., Cao, Y., Chu, P., Mehta, A., Carty, R., Liu, K., Pan, W. P. and Riley, J. T., “Mercury emissions from a 100 MW wall fired boiler as measured by Memicontinuous Mercury Monitor and Ontario Hydro Method”, Fuel Processing Technology, vol. 85, pp. 487-499, 2004.

Kelly, S., Pollak, F. H. and Tomkiewicz, M., “Raman spectroscopy as a morphological probe for TiO2 aerogels”, The Journal of Physical Chemistry B, vol. 101, pp. 2730-2734, 1997.

Kim, D.W., Kim, M.H., and Ham, S.W., “An on-line infrared spectroscopic system with a modified multipath White cell for direct measurements of N2O from NH3-SCR reaction”, Korean Journal of Chemical Engineering, vol.27, pp. 1730-1737, 2010.

Kotnik, J., Horvat M., Mandic, V., Martina, L., “Influence of the Sostanj coal-fired thermal plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia”, Science of the Total Environment, vol. 259, pp. 85-95, 2000.

Krivanek, C.S., “Mercury control technologies for MWC’s: the unanswered questions”, Journal of Hazardous Materials, vol. 47, pp. 119-136, 1996.

Lancia, A., Matsumara, D., Pepe, F., Volpicelli, G., “Adsorption of Mercuric Chloride Vapours from Incinerator Flue Gases on Calcium Hydroxide Particles”, Combustion Science and Technology, vol. 93, pp. 277-289, 1993.

Lange, N. A., “Handbook of Chemistry, McGraw–Hill”, New York, pp. 288-290, 1976.

Laudal, D.L., Brown, T.D. and Nott, B.R., “Effects of flue gas constituents on mercury speciation”, Fuel Processing Technology, pp. 65-66, pp. 157-165, 2000.

Lee, C.W., and Srivastava, R.K., “Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and powder river basin coal combustion flue gases”, Journal of the Air & Waste Management Association, vol. 56, pp. 643-649, 2006.

Lee, C.W., Serre, S. D., Zhao, Y., Lee, S.J., & Hastings, T.W., “Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated powder river basin coal combustion conditions”, Journal of the Air & Waste Management Association, vol. 58, pp. 484-493, 2008.

Lee, S.J., Seo, Y.C., Jang, H.N., Park, K.S., Baek, J.I., An, H.S. and Song, K.C., “Speciation and mass distribution of mercury in a bituminous coal-fired power plant”, Atmospheric Environment, vol. 40, pp. 2215-2224, 2006.

Li, H., Wu, C. Y., Li, Y., Li, L., Zhao, Y. and Zhang, J., “Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature”, Journal of Hazardous Materials, vol. 243, pp. 117-123, 2012.

Li, Y., Murphy, P. and Wu, C.Y., “Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite”, Fuel Processing Technology, vol. 89, pp. 567-573, 2008.

Licate, A., Balles, E. and Schuttetnhelm, W., “Mercury control alternative for coal-fired power plants”, 10th Annual NAWTEC Conference, Orlando, USA, 2002.

Liljelind, P., Unsworth, J., Maaskant, O. and Marklund, S., “Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction”, Chemosphere, Vol. 42, pp. 615-623, 2001.

Lin, C.C., Yee, N. and Barkay, T., “Microbial transformations in the mercury cycle”, Environmental Chemistry and Toxicology of Mercury, pp. 155-191, 2012.

Lindbauer, R.L., Wurst, F. and Prey, T., “Combustion dioxin suppression in municipal solid waste incineration with sulfur additives”, Chemosphere, vol. 25, pp. 1409-1414, 1992.

Lutter, R. and Irwin, E., “Mercury in the environment: A volatile problem”, Environment: Science and Policy for Sustainable Development, vol.44, pp. 24-40, 2002.

Martin Y. M., Pedro A., Silvia S. and Jesús B., “Nitrous oxide formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts”, Applied Catalysis B: Environmental, vol.70, pp. 330-334, 2007.

Miyamoto, A., Kobayashi, K., Inomata, M., and Murakami, Y., “Nitrogen-15 tracer investigation of the mechanism of the reaction of nitric oxide with ammonia on vanadium oxide catalysts”, The Journal of Physical Chemistry, vol.86, pp. 2945-2950, 1982.

Niksa, S. and Fujiwara, N., “A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas”, Journal of the Air & Waste Management Association, vol. 55, pp. 1866-1875, 2005.

Niksa, S., Helble, J.J. and Fujiwara, N., “Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems”, Environmental Science & Technology, pp. 35, pp. 3701-3706, 2001.

Nishitani, T., Fukunaga, I., Itoh, H. and Nomura, T., “The relationship between HCl and mercury speciation in flue gas from municipal solid waste incinerations”, Chemosphere, vol. 39, pp. 1-9, 1999.

Norton, G.A., Yang, H., Brown, R.C., Laudal, D.l., Dunham, G.E. and Erjavec, J. “Heterogeneous oxidation of mercury in simulated post combustion condition”, Fuel, vol. 82, pp. 107-116, 2003.

Park, K. S., Seo, Y.C., Lee, S. J. and Lee, J.H., “Emission and speciation of mercury from various combustion sources”, Powder Technology, vol. 180, pp. 151-156, 2008.

Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L. and Benson, S.A., “Status review of mercury control options for coal fired power plants”, Fuel Processing Technology, vol. 82, pp. 89-165, 2003.

Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G. and Telmer, K., “Global mercury emissions to the atmosphere from anthropogenic and natural sources”, Atmospheric Chemistry and Physics, vol. 10, pp. 5951-5964, 2010.

Pudasainee, D., Lee, S. J., Lee, S.H., Kim, J.H., Jang, H.N., Cho, S.J. and Seo, Y.C., “Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants”, Fuel, vol. 89, pp. 804-809, 2010.

Rallo, M., Heidel, B., Brechtel, K. and Maroto-Valer, M.M., “Effect of SCR operation variables on mercury speciation”, Chemical Engineering Journal, vol. 198, pp. 87-94, 2012.

Schroeder, W.H. and Munthe, J., “Atmospheric mercury—An overview”, Atmospheric Environment, vol. 32, pp. 809-822, 1998.

Schuster, E., “The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-a review of the literature”, Water, Air and Soil Pollution, vol.56, pp. 667-680, 1991.

Senior, C.L., “Oxidation of mercury across selective catalytic reduction catalysts in coal–fired power plants”, Journal of the Air & Waste Management Association, vol. 56, pp. 23-31, 2006.

Senior, C.L., Helbel, J.J. and Sarofim, A.F., “Emission of mercury, trace element, and fine particle from stationary combustion sources”, Fuel Processing Technology, vol. 65, pp. 263-288, 2000.

Senior, C.L., Morency, G.P., Huffman, G.P., Huggins, F.E., Shah, N., Peterson, T., Shadman, F. and Wu, B., “Interaction between vapor-phase mercury and coal fly ash under simulated utility power plant flue gas condition”, Air and Waste Management Association, 91st Annual Meeting and Exhibition, June.14-18, 98-RA79B.04, 1998.

Srivastava, R.K., “Control of Mercury Emissions from Coal Fired Electric Utility Boilers: An Update”, EPA/600/R-10/006; U.S. Environmental Protection Agency: Washington, DC, 2010.

Stolle, R., Koeser, H. and Gutberlet, H., “Oxidation and reduction of mercury by SCR De-NOx catalysts under flue gas conditions in coal fired power Plants”, Applied Catalysis B: Environmental, vol. 144, pp. 489-497, 2014.

Suarez Negreira, A. and Wilcox, J., “DFT study of Hg oxidation across vanadia-titania SCR catalyst under flue gas conditions”, The Journal of Physical Chemistry C, vol. 117, pp. 1761-1772, 2013a.

Suarez Negreira, A. and Wilcox, J., “Role of WO3 in the Hg oxidation across the V2O5–WO3–TiO2 SCR catalyst: A DFT study”, The Journal of Physical Chemistry C, vol. 117, pp. 24397-24406, 2013b.

Swain, E.B., “Mercury: source and environment fate”, Presentation at the Mercury Contamination Reduction Initiative Workshop, St. Paul, Minnesota, 1997.

Tirler, W., Mair, K., Donegà, M., Voto, G. and De Carli, A., “PCDD/F removal with catalytic filters in a municipal solid waste incineration”, Organohalogen Compounds, vol. 72, pp. 1561-1564, 2010.

U.S. EPA, “Mercury Information Collection Request (ICR) Part III”, 1999.

U.S. EPA, “Mercury study report to congress, volume Ⅱ:An inventory of anthropogenic mercury in the United States”, Office of Air Quality Planning and Standards, EPA-425R/97-004, 1997.

U.S. EPA, “Reducing Toxic Pollution from Power Plants,” pp. 6, March 16, 2011.

UNEP, “Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch”, Geneva, Switzerland, 2013.

UNEP, “Global Mercury Assessment”, Geneva, Switzerland, 2002.

UNEP, “Technical background report to the global atmospheric mercury assessment”, 2008.

Wang, Y., Duan, Y., Yang, L., Zhao, C., Shen, X., Zhang, M., Zhuo, Y. and Chen, C., “Experimental study on mercury transformation and removal in coal-fired boiler flue gases”, Fuel Processing Technology, vol. 90, pp. 643-651, 2009.

Weber, R., Sakurai, T. and Hagenmaier, H., “Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts”, Applied Catalysis B: Environmental, vol. 20, pp. 249-256, 1999.

Wu, B., Peterson, T.W., Shadman, F., Senior, C.L., Morency, J.R., Huggins, F.E. and Huffman, G.P., “Interactions between vapor-phase mercury and coal char under simulated utility power plant flues gas condition”, Fuel Processing Technology, vol. 63, pp. 93-108, 2000.

Yim, S.D., Koh, D.J. and Nam, I.S., “A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts”, Catalysis Today, vol. 75, pp. 269-276, 2002.

Yongxin, Z., Michael, D.M., Olson E.S., Pavlish, J.H. and Grant E. D. “Effect of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions”, Journal of Air and Waste Management Association, vol. 56, pp. 628-635, 2006.

Zhang, A., Zheng, W., Song, J., Hu, S., Liu, Z. and Xiang, J., “Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature”, Chemical Engineering Journal, vol. 236, pp. 29-38, 2014.

Zhuang, Y., Laumb, J., Liggett, R., Holmes, M. and Pavlish, J., “Impacts of acid gases on mercury oxidation across SCR catalyst”, Fuel Processing Technology, vol. 88, pp. 929-934, 2007.

王柏智,「垃圾焚化及燃煤程序之重金屬排放特性研究」,國立中央大學環工所,碩士論文,2006。

行政院環境保護署,「固定污染源戴奧辛及重金屬排放調查及管制計畫」,中興工程,2013。

吳榮宗,「工業觸媒概論」,國興出版社,1989。

李淑莉,「台灣地區燃煤發電廠含汞物質流布與管理之研究」,國立臺北科技大學環境工程與管理研究所,碩士論文,2008。

周書瑋,「汽電共生設施重金屬污染物排放調查及管制策略研究」,國立臺北科技大學環境工程與管理研究所,碩士論文,2013。

林宣宏,「應用MnOx-CeO2/TiO2觸媒同時去除煙道氣中NO、汞及戴奧辛之研究」,國立中央大學環境工程所,碩士論文,2014。

侯丞、何啟功,「淺談汞對健康的危害」,高醫醫訊,第18卷,1999。

高雄市政府環境保護局,「日本先進垃圾焚化技術考察」,2010。

陳亭穆,「摻雜過渡金屬之觸媒在光催化及加氫脫硫反應促進效應之研究」,清華大學化學工程學系,學位論文,2010年。

楊文毅,「鈀觸媒氧化焚化廢氣中有機物之研究」,國立中興大學環工所,碩士論文,2000。

葉智偉,「以觸媒催化分解戴奧辛於實廠與小型模廠之研究」,國立中央大學環工所,碩士論文,2005。

指導教授 張木彬(Moo-Been Chang) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明