博碩士論文 102226036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.117.105.215
姓名 高瑞霖(Ruei-Lin Kao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 有機高分子電化學發光元件
(Organic Polymer Light-Emitting Electrochemical Cells)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 開孔電極結構對於垂直式有機電晶體電性影響之研究
★ 微米光柵壓印有機太陽能電池主動層之研究★ 有機波導結構的ASE現象研究以及共振腔結構的模擬
★ 利用金屬微共振腔研究光與有機激發態強耦合現象★ 多層式雙極有機場效電晶體之研究
★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究
★ 有機染料分子薄膜之光電特性研究★ 多層結構有機電晶體之研究
★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象★ 有機強耦合共振腔元件設計與發光量測系統架設之研究
★ 強耦合有機微共振腔之設計與研究★ 光激發有機極化子元件之製作與量測
★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究★ 光激發有機極化子元件之模擬與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要以共軛發光高分子poly(9,9-dioctylfluorene -alt-benzothiadiazole) (F8BT)摻雜離子液體 tetradecyltrihexylphosphonium (trifluoromethylsulfonyl) amide (P66614-TFSA) 作為主動層製作平面 (planar) 與垂直 (sandwich)結構之高分子電化學發光元件(Light-emitting electrochemical cell, LEC),藉此研究其光電特性,並比較使用高與低分子量 F8BT 之差異。
實驗上,首先透過空間電荷限制電流擬合單載子元件特性曲線,得知高與低分子量的 F8BT分別具有平衡與不平衡的電子與電洞遷移率。接著以不同分子量 F8BT 摻雜不同濃度之P66614-TFSA製作planar LEC 和 sandwich LEC。
比較所有元件表現,發現無論高或低分子量摻雜的 F8BT LEC 元件相較於未摻雜的F8BT 元件可具有較高外部量子效率。此效應在 planar 結構下尤其顯著,其中未摻雜元件不具備導電及發光之表現,而摻雜元件可大幅提升電流密度並在通道中觀察到發光的現象。以摻雜濃度為10:1的高分子量 F8BT 之planar LEC達到高的外部量子效率(約0.05%)。相較之下,以同樣摻雜濃度的低分子量 F8BT planar LEC 則具有較低的外部量子效率(0.004%)。然而無論高或低分子量 F8BT之摻雜元件,均有發光線偏向陰極的現象,推測可能是電化學副反應 (electrochemical side reaction) 的發生,使得高分子在陰極的還原反應較慢發生。
另一方面,在高與低分子量 F8BT sandwich LEC,以摻雜濃度為10:1的高分子量 F8BT 之sandwich LEC達到最高的外部量子效率(約0.02%),同樣摻雜濃度的低分子量 F8BT sandwich LEC 則具有較低的外部量子效率(0.001%),並透過光學顯微鏡可發現摻雜元件具有完整的發光面積,推論電子的注入效率有大幅的提升。
此實驗結果證實高分子電化學發光元件可應用於高電流密度以及低驅動電壓之有機發光元件的研究。
摘要(英) In this thesis, we used of blends composed of poly(9,9-dioctylfluorene-alt-benzothiadiazole), F8BT and a ionic liquid ,tetradecyltrihexylphosphonium (trifluoromethylsulfonyl) amide (P66614-TFSA), as the active layer, in planar structure polymer light-emitting electrochemical cell (LEC) and sandwich structure LEC.We study the optic and electric property of the device,and compare the difference between using high and low molecular weight F8BT.
First,the carrier mobility of difference molecular weight F8BT at carrier only device has been estimated by using space-charge-limited current measurements in experiment.After that,we use different molecular weight of F8BT for difference doping concentration to fabricate the planar LEC and sandwich LEC.
We observe whether the high or low molecular weight F8BT doping device has higher external quantum efficiency than undoped F8BT device and in all device performance.The effect is obvious especially in planar LEC.Undoped device don’t have conductivity and emit the light among the device.However the doping device current density can increase dramatically,and observe the light in the channel.When the planar LEC is used high molecular weight F8BT for doping concentration 10:1 condition,the device can achieve high external quantum efficiency(~0.05%) in all device.By contrast,when the planar LEC is used low molecular weight F8BT for same doping concentration,the device has lower external quantum efficiency(~0.004%).However High or low molecular weight F8BT of doping device,the emission line is close to cathode. we surmise that situation is caused by electrochemical side reaction,it make polymer reduction happened slow in cathode.
On the other hand, When the sandwich LEC is used high molecular weight F8BT for doping concentration 10:1 condition,the device can achieve high external quantum efficiency(~0.02%) in all device. When the sandwich LEC is used low molecular weight F8BT for same doping concentration,the device has lower external quantum efficiency(~0.001%).We observe the doping device have whole emission area by optic microscope.we surmise the electron injection efficiency increase dramatically.
The work prove that polymer LEC apply high current density and low driving voltage to organic light emitting device investigation.
關鍵字(中) ★ 電化學發光元件
★ 高分子
關鍵字(英)
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2有機發光電化學元件發展 2
1.3 研究動機與目的 5
第二章 基本原理 6
2.1 共軛高分子 6
2.2 電解質 6
2.2.1 固態高分子電解質 8
2.2.2 離子液體 9
2.2.3離子過渡金屬錯合物 10
2.3 傳輸理論 12
2.4發光機制 13
2.4.1 電動力學模型 14
2.4.2電化學模型 15
2.5 外部量子效率計算 20
第三章 實驗方法與架構 21
3.1 選用材料 21
3.2元件架構介紹與製備 23
3.2.1基板清洗 24
3.2.2熱蒸鍍 24
3.2.3旋轉圖佈 F8BT:P66614-TFSA.有機膜 25
3.2 量測儀器 25
第四章 結果與討論 27
4.1低分子量 F8BT(Mw=28.3kg/mol) 27
4.1.1不同摻雜濃度之 planar LEC 電性與光性分析 29
4.1.2不同摻雜濃度之 sandwich LEC 電性與光性分析 32
4.2 高分子量 F8BT (Mw=139 kg/mol) 34
4.2.1不同摻雜濃度之 planar LEC 電性與光性分析 36
4.2.2不同摻雜濃度之 sandwich LEC 電性與光性分析 39
4.3 小結 41
第五章 結論與未來展望 43
參考文獻 44
參考文獻 1. M. Pope, H.P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. J. Chem. Phys., 1963. 38: p. 2042.
2. C. W. Tang and S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett., 1987. 51: p. 913.
3. J.H. Burroughes, et al., Light-emitting diodes based on conjugated polymers. Nature, 1990. 347.
4. Q. Pei, et al., Polymer Light-Emitting Electrochemical Cells. science, 1995. 269.
5. Q. Pei, et al., Polymer Light-Emitting Electrochemical Cells: In Situ Formation of a Light-Emitting p-n Junction. J. Am. Chem. Soc., 1996. 118.
6. Y. Hu, C. Tracy, and J. Gao, High-resolution imaging of electrochemical doping and dedoping processes in luminescent conjugated polymers. Applied Physics Letters, 2006. 88(12): p. 123507.
7. P. Matyba, et al., The dynamic organic p-n junction. Nat Mater, 2009. 8(8): p. 672-6.
8. R.n.D. Costa, Intramolecular π-Stacking in a Phenylpyrazole-Based Iridium Complex and Its Use in Light-Emitting Electrochemical Cells. 2010. 132: p. 5978.
9. Q. Eliana, PEO-based composite polymer electrolytes. Solid State Ionics, 1998. 110: p. 1.
10. C.V. Hoven, Chemically fixed p–n heterojunctions for polymer electronics by means of covalent B–F bond formation. Nature Materials, 2010. 9: p. 249.
11. J.M. Leger, D.B. Rodovsky, and G.P. Bartholomew, Self-Assembled, Chemically Fixed Homojunctions in Semiconducting Polymers. Advanced Materials, 2006. 18(23): p. 3130-3134.
12. S. Tang, K. Irgum, and L. Edman, Chemical stabilization of doping in conjugated polymers. Organic Electronics, 2010. 11(6): p. 1079-1087.
13. Y. Zhou, Electrochemical Formation of Stable p-i-n Junction in Conjugated Polymer Thin Films. 2009. 113: p. 8481.
14. L. Edman, Planar polymer light-emitting device with fast kinetics at a low voltage. Journal of Applied Physics, 2004. 95(8): p. 4357.
15. Y. Shao, G.C. Bazan, and A.J. Heeger, Long-Lifetime Polymer Light-Emitting Electrochemical Cells. Advanced Materials, 2007. 19(3): p. 365-370.
16. J.H. Shin, S. Xiao, and L. Edman, Polymer Light-Emitting Electrochemical Cells: The Formation and Effects of Doping-Induced Micro Shorts. Advanced Functional Materials, 2006. 16(7): p. 949-956.
17. C. Yang., Q. Sun., and J. Qing., Ionic Liquid Doped Polymer Light-Emitting Electrochemical Cells. J. Phys. Chem. B, 2003. 107: p. 12981.
18. G. Yu., and Y. Cao., Polymer Light-Emitting Electrochemical Cells with Frozen p-i-n Junction at Room Temperature. Adv. Mater., 1998. 10.
19. S. Joon-Ho., and L. Edman., Light-Emitting Electrochemical Cells with Millimeter-Sized Interelectrode Gap: Low-Voltage Operation at Room Temperature. J. AM. CHEM. SOC., 2006. 128: p. 15568.
20. G. Wantz, et al., Towards frozen organic PN junctions at room temperature using high-Tg polymeric electrolytes. Organic Electronics, 2012. 13(10): p. 1859-1864.
21. J. Dane, and J. Gao, Imaging the degradation of polymer light-emitting devices. Applied Physics Letters, 2004. 85(17): p. 3905.
22. J. Fang., P. Matyba., and N.D. Robinson., Identifying and Alleviating Electrochemical Side-Reactions in Light-Emitting Electrochemical Cells. J. AM. CHEM. SOC., 2008. 130: p. 4562.
23. J.H. Shin, et al., The influence of electrodes on the performance of light-emitting electrochemical cells. Electrochimica Acta, 2007. 52(23): p. 6456-6462.
24. T., Wågberg, et al., On the Limited Operational Lifetime of Light-Emitting Electrochemical Cells. Advanced Materials, 2008. 20(9): p. 1744-1749.
25. H.L., Filiatrault, et al., Stretchable light-emitting electrochemical cells using an elastomeric emissive material. Adv Mater, 2012. 24(20): p. 2673-8.
26. A. Sandstrom, et al., Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat Commun, 2012. 3: p. 1002.
27. T. Sakanoue, et al., Optically pumped amplified spontaneous emission in an ionic liquid-based polymer light-emitting electrochemical cell. Applied Physics Letters, 2012. 100(26): p. 263301.
28. R.P. Morco, A.Y. Musa, and J.C. Wren, The molecular structures and the relationships between the calculated molecular and observed bulk phase properties of phosphonium-based ionic liquids. Solid State Ionics, 2014. 258: p. 74-81.
29. A.J. Heeger, Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials. J. Phys. Chem. B,, 2001. 105.
30. W.H. Meyer, Polymer Electrolytes for Lithium-Ion Batteries. Adv. Mater., 1998. 10: p. 439.
31. J. Fang, Y. Yang, and L. Edman, Understanding the operation of light-emitting electrochemical cells. Applied Physics Letters, 2008. 93(6): p. 063503.
32. J. Gao, et al., Polymer light-emitting electrochemical cells with frozen junctions. Journal of Applied Physics, 1999. 86(8): p. 4594.
33. D.S. Silvester, et al., The electrochemical oxidation of hydrogen at activated platinum electrodes in room temperature ionic liquids as solvents. Journal of Electroanalytical Chemistry, 2008. 618(1-2): p. 53-60.
34. J. H. Shin, et al., Polymer light-emitting electrochemical cells: Frozen-junction operation of an “ionic liquid” device. Applied Physics Letters, 2005. 87(4): p. 043506.
35. Y.P., Jhang, et al., Improving device efficiencies of solid-state white light-emitting electrochemical cells by adjusting the emissive-layer thickness. Organic Electronics, 2013. 14(10): p. 2424-2430.
36. N. Serizawa, et al., Physicochemical Properties and Application of Ionic Liquids with N-P Bonds as Lithium Secondary Battery Electrolytes. Journal of The Electrochemical Society, 2011. 158(9): p. A1023.
37. K. Tsunashima, and M. Sugiya, Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochemistry Communications, 2007. 9(9): p. 2353-2358.
38. A.E. Somers, et al., Ionic liquids as antiwear additives in base oils: influence of structure on miscibility and antiwear performance for steel on aluminum. ACS Appl Mater Interfaces, 2013. 5(22): p. 11544-53.
39. Handy., E.S., A.J. Pal., and M.F. Rubner., Solid-State Light-Emitting Devices Based on the Tris-Chelated Ruthenium(II) Complex. 2. Tris(bipyridyl)ruthenium(II) as a High-Brightness Emitter. J. Am. Chem. Soc., 1999. 121: p. 3525.
40. J.D. Slinker, A.A. Gorodetsky., and M.S. Lowry., Efficient Yellow Electroluminescence from a Single Layer of a Cyclometalated Iridium Complex. J. AM. CHEM. SOC., 2004. 126: p. 2763.
41. Q. Zhang, et al., Highly Efficient Electroluminescence from Green-Light-Emitting Electrochemical Cells Based on CuI Complexes. Advanced Functional Materials, 2006. 16(9): p. 1203-1208.
42. H.C. Su., et al., Solid-State White Light-Emitting Electrochemical Cells Using Iridium-Based Cationic Transition Metal Complexes. J. AM. CHEM. SOC., 2008. 130: p. 3413.
43. T.Y. Chu, and O.K. Song, Hole mobility of N,N[sup ʹ]-bis(naphthalen-1-yl)-N,N[sup ʹ]-bis(phenyl) benzidine investigated by using space-charge-limited currents. Applied Physics Letters, 2007. 90(20): p. 203512.
44. D. Kabra, et al., Efficient single-layer polymer light-emitting diodes. Adv Mater, 2010. 22(29): p. 3194-8.
45. L.P. Lu, C.E. Finlayson, and R.H. Friend, Thick polymer light-emitting diodes with very high power efficiency using Ohmic charge-injection layers. Semiconductor Science and Technology, 2014. 29(2): p. 025005.
46. J.D. Slinker, et al., Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. Nat Mater, 2007. 6(11): p. 894-9.
47. J.C. deMello, et al., Ionic space-charge effects in polymer light-emitting diodes. Physical Review B, 1998. 57.
48. J.C. deMello, Interfacial feedback dynamics in polymer light-emitting electrochemical cells. Physical Review B, 2002. 66(23).
49. J.C. deMello, et al., Electric Field Distribution in Polymer Light-Emitting Electrochemical Cells. Physical Review Letter, 2000. 85.
50. L. Edman, Bringing light to solid-state electrolytes: The polymer light-emitting electrochemical cell. Electrochimica Acta, 2005. 50(19): p. 3878-3885.
51. N.D., Robinson, et al., Electrochemical doping during light emission in polymer light-emitting electrochemical cells. Physical Review B, 2008. 78(24).
52. S. van Reenen, R.A.J. Janssen, and M. Kemerink, Dynamic Processes in Sandwich Polymer Light-Emitting Electrochemical Cells. Advanced Functional Materials, 2012. 22(21): p. 4547-4556.
53. N.D. Robinson, et al., Doping front propagation in light-emitting electrochemical cells. Physical Review B, 2006. 74(15).
54. A. Sandström, P. Matyba, and L. Edman, Yellow-green light-emitting electrochemical cells with long lifetime and high efficiency. Applied Physics Letters, 2010. 96(5): p. 053303.
55. C.L. Donley, et al., Effects of Packing Structure on the Optoelectronic and Charge Transport Properties in Poly(9,9-di-n-octylfluorene-alt- benzothiadiazole). J. AM. CHEM. SOC., 2005. 127.
56. M.K. Fung, et al., Distinct interfaces of poly (9,9-dioctylfluorene-co-benzothiadiazole) with cesium and calcium as observed by photoemission spectroscopy. Journal of Applied Physics, 2003. 94(9): p. 5763.
57. M. Vasilopoulou, et al., Reduced molybdenum oxide as an efficient electron injection layer in polymer light-emitting diodes. Applied Physics Letters, 2011. 98(12): p. 123301.
58. S. van Reenen, et al., Salt Concentration Effects in Planar Light-Emitting Electrochemical Cells. Advanced Functional Materials, 2011. 21(10): p. 1795-1802.
59. K., Morii, et al., Enhanced Hole Injection in a Hybrid Organic–Inorganic Light-Emitting Diode. Japanese Journal of Applied Physics, 2008. 47(9): p. 7366-7368.
60. A. Cadby, et al., Mapping exciton quenching in photovoltaic-applicable polymer blends using time-resolved scanning near-field optical microscopy. Journal of Applied Physics, 2008. 103(9): p. 093715.
61. R., Marcilla, et al., Light-emitting electrochemical cells using polymeric ionic liquid/polyfluorene blends as luminescent material. Applied Physics Letters, 2010. 96(4): p. 043308.
62. J., Fang, P. Matyba, and L. Edman, The Design and Realization of Flexible, Long-Lived Light-Emitting Electrochemical Cells. Advanced Functional Materials, 2009. 19(16): p. 2671-2676.
63. Y. Hu, and J. Gao, Cationic effects in polymer light-emitting electrochemical cells. Applied Physics Letters, 2006. 89(25): p. 253514.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2015-9-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明