參考文獻 |
1. M. Pope, H.P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. J. Chem. Phys., 1963. 38: p. 2042.
2. C. W. Tang and S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett., 1987. 51: p. 913.
3. J.H. Burroughes, et al., Light-emitting diodes based on conjugated polymers. Nature, 1990. 347.
4. Q. Pei, et al., Polymer Light-Emitting Electrochemical Cells. science, 1995. 269.
5. Q. Pei, et al., Polymer Light-Emitting Electrochemical Cells: In Situ Formation of a Light-Emitting p-n Junction. J. Am. Chem. Soc., 1996. 118.
6. Y. Hu, C. Tracy, and J. Gao, High-resolution imaging of electrochemical doping and dedoping processes in luminescent conjugated polymers. Applied Physics Letters, 2006. 88(12): p. 123507.
7. P. Matyba, et al., The dynamic organic p-n junction. Nat Mater, 2009. 8(8): p. 672-6.
8. R.n.D. Costa, Intramolecular π-Stacking in a Phenylpyrazole-Based Iridium Complex and Its Use in Light-Emitting Electrochemical Cells. 2010. 132: p. 5978.
9. Q. Eliana, PEO-based composite polymer electrolytes. Solid State Ionics, 1998. 110: p. 1.
10. C.V. Hoven, Chemically fixed p–n heterojunctions for polymer electronics by means of covalent B–F bond formation. Nature Materials, 2010. 9: p. 249.
11. J.M. Leger, D.B. Rodovsky, and G.P. Bartholomew, Self-Assembled, Chemically Fixed Homojunctions in Semiconducting Polymers. Advanced Materials, 2006. 18(23): p. 3130-3134.
12. S. Tang, K. Irgum, and L. Edman, Chemical stabilization of doping in conjugated polymers. Organic Electronics, 2010. 11(6): p. 1079-1087.
13. Y. Zhou, Electrochemical Formation of Stable p-i-n Junction in Conjugated Polymer Thin Films. 2009. 113: p. 8481.
14. L. Edman, Planar polymer light-emitting device with fast kinetics at a low voltage. Journal of Applied Physics, 2004. 95(8): p. 4357.
15. Y. Shao, G.C. Bazan, and A.J. Heeger, Long-Lifetime Polymer Light-Emitting Electrochemical Cells. Advanced Materials, 2007. 19(3): p. 365-370.
16. J.H. Shin, S. Xiao, and L. Edman, Polymer Light-Emitting Electrochemical Cells: The Formation and Effects of Doping-Induced Micro Shorts. Advanced Functional Materials, 2006. 16(7): p. 949-956.
17. C. Yang., Q. Sun., and J. Qing., Ionic Liquid Doped Polymer Light-Emitting Electrochemical Cells. J. Phys. Chem. B, 2003. 107: p. 12981.
18. G. Yu., and Y. Cao., Polymer Light-Emitting Electrochemical Cells with Frozen p-i-n Junction at Room Temperature. Adv. Mater., 1998. 10.
19. S. Joon-Ho., and L. Edman., Light-Emitting Electrochemical Cells with Millimeter-Sized Interelectrode Gap: Low-Voltage Operation at Room Temperature. J. AM. CHEM. SOC., 2006. 128: p. 15568.
20. G. Wantz, et al., Towards frozen organic PN junctions at room temperature using high-Tg polymeric electrolytes. Organic Electronics, 2012. 13(10): p. 1859-1864.
21. J. Dane, and J. Gao, Imaging the degradation of polymer light-emitting devices. Applied Physics Letters, 2004. 85(17): p. 3905.
22. J. Fang., P. Matyba., and N.D. Robinson., Identifying and Alleviating Electrochemical Side-Reactions in Light-Emitting Electrochemical Cells. J. AM. CHEM. SOC., 2008. 130: p. 4562.
23. J.H. Shin, et al., The influence of electrodes on the performance of light-emitting electrochemical cells. Electrochimica Acta, 2007. 52(23): p. 6456-6462.
24. T., Wågberg, et al., On the Limited Operational Lifetime of Light-Emitting Electrochemical Cells. Advanced Materials, 2008. 20(9): p. 1744-1749.
25. H.L., Filiatrault, et al., Stretchable light-emitting electrochemical cells using an elastomeric emissive material. Adv Mater, 2012. 24(20): p. 2673-8.
26. A. Sandstrom, et al., Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat Commun, 2012. 3: p. 1002.
27. T. Sakanoue, et al., Optically pumped amplified spontaneous emission in an ionic liquid-based polymer light-emitting electrochemical cell. Applied Physics Letters, 2012. 100(26): p. 263301.
28. R.P. Morco, A.Y. Musa, and J.C. Wren, The molecular structures and the relationships between the calculated molecular and observed bulk phase properties of phosphonium-based ionic liquids. Solid State Ionics, 2014. 258: p. 74-81.
29. A.J. Heeger, Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials. J. Phys. Chem. B,, 2001. 105.
30. W.H. Meyer, Polymer Electrolytes for Lithium-Ion Batteries. Adv. Mater., 1998. 10: p. 439.
31. J. Fang, Y. Yang, and L. Edman, Understanding the operation of light-emitting electrochemical cells. Applied Physics Letters, 2008. 93(6): p. 063503.
32. J. Gao, et al., Polymer light-emitting electrochemical cells with frozen junctions. Journal of Applied Physics, 1999. 86(8): p. 4594.
33. D.S. Silvester, et al., The electrochemical oxidation of hydrogen at activated platinum electrodes in room temperature ionic liquids as solvents. Journal of Electroanalytical Chemistry, 2008. 618(1-2): p. 53-60.
34. J. H. Shin, et al., Polymer light-emitting electrochemical cells: Frozen-junction operation of an “ionic liquid” device. Applied Physics Letters, 2005. 87(4): p. 043506.
35. Y.P., Jhang, et al., Improving device efficiencies of solid-state white light-emitting electrochemical cells by adjusting the emissive-layer thickness. Organic Electronics, 2013. 14(10): p. 2424-2430.
36. N. Serizawa, et al., Physicochemical Properties and Application of Ionic Liquids with N-P Bonds as Lithium Secondary Battery Electrolytes. Journal of The Electrochemical Society, 2011. 158(9): p. A1023.
37. K. Tsunashima, and M. Sugiya, Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochemistry Communications, 2007. 9(9): p. 2353-2358.
38. A.E. Somers, et al., Ionic liquids as antiwear additives in base oils: influence of structure on miscibility and antiwear performance for steel on aluminum. ACS Appl Mater Interfaces, 2013. 5(22): p. 11544-53.
39. Handy., E.S., A.J. Pal., and M.F. Rubner., Solid-State Light-Emitting Devices Based on the Tris-Chelated Ruthenium(II) Complex. 2. Tris(bipyridyl)ruthenium(II) as a High-Brightness Emitter. J. Am. Chem. Soc., 1999. 121: p. 3525.
40. J.D. Slinker, A.A. Gorodetsky., and M.S. Lowry., Efficient Yellow Electroluminescence from a Single Layer of a Cyclometalated Iridium Complex. J. AM. CHEM. SOC., 2004. 126: p. 2763.
41. Q. Zhang, et al., Highly Efficient Electroluminescence from Green-Light-Emitting Electrochemical Cells Based on CuI Complexes. Advanced Functional Materials, 2006. 16(9): p. 1203-1208.
42. H.C. Su., et al., Solid-State White Light-Emitting Electrochemical Cells Using Iridium-Based Cationic Transition Metal Complexes. J. AM. CHEM. SOC., 2008. 130: p. 3413.
43. T.Y. Chu, and O.K. Song, Hole mobility of N,N[sup ʹ]-bis(naphthalen-1-yl)-N,N[sup ʹ]-bis(phenyl) benzidine investigated by using space-charge-limited currents. Applied Physics Letters, 2007. 90(20): p. 203512.
44. D. Kabra, et al., Efficient single-layer polymer light-emitting diodes. Adv Mater, 2010. 22(29): p. 3194-8.
45. L.P. Lu, C.E. Finlayson, and R.H. Friend, Thick polymer light-emitting diodes with very high power efficiency using Ohmic charge-injection layers. Semiconductor Science and Technology, 2014. 29(2): p. 025005.
46. J.D. Slinker, et al., Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. Nat Mater, 2007. 6(11): p. 894-9.
47. J.C. deMello, et al., Ionic space-charge effects in polymer light-emitting diodes. Physical Review B, 1998. 57.
48. J.C. deMello, Interfacial feedback dynamics in polymer light-emitting electrochemical cells. Physical Review B, 2002. 66(23).
49. J.C. deMello, et al., Electric Field Distribution in Polymer Light-Emitting Electrochemical Cells. Physical Review Letter, 2000. 85.
50. L. Edman, Bringing light to solid-state electrolytes: The polymer light-emitting electrochemical cell. Electrochimica Acta, 2005. 50(19): p. 3878-3885.
51. N.D., Robinson, et al., Electrochemical doping during light emission in polymer light-emitting electrochemical cells. Physical Review B, 2008. 78(24).
52. S. van Reenen, R.A.J. Janssen, and M. Kemerink, Dynamic Processes in Sandwich Polymer Light-Emitting Electrochemical Cells. Advanced Functional Materials, 2012. 22(21): p. 4547-4556.
53. N.D. Robinson, et al., Doping front propagation in light-emitting electrochemical cells. Physical Review B, 2006. 74(15).
54. A. Sandström, P. Matyba, and L. Edman, Yellow-green light-emitting electrochemical cells with long lifetime and high efficiency. Applied Physics Letters, 2010. 96(5): p. 053303.
55. C.L. Donley, et al., Effects of Packing Structure on the Optoelectronic and Charge Transport Properties in Poly(9,9-di-n-octylfluorene-alt- benzothiadiazole). J. AM. CHEM. SOC., 2005. 127.
56. M.K. Fung, et al., Distinct interfaces of poly (9,9-dioctylfluorene-co-benzothiadiazole) with cesium and calcium as observed by photoemission spectroscopy. Journal of Applied Physics, 2003. 94(9): p. 5763.
57. M. Vasilopoulou, et al., Reduced molybdenum oxide as an efficient electron injection layer in polymer light-emitting diodes. Applied Physics Letters, 2011. 98(12): p. 123301.
58. S. van Reenen, et al., Salt Concentration Effects in Planar Light-Emitting Electrochemical Cells. Advanced Functional Materials, 2011. 21(10): p. 1795-1802.
59. K., Morii, et al., Enhanced Hole Injection in a Hybrid Organic–Inorganic Light-Emitting Diode. Japanese Journal of Applied Physics, 2008. 47(9): p. 7366-7368.
60. A. Cadby, et al., Mapping exciton quenching in photovoltaic-applicable polymer blends using time-resolved scanning near-field optical microscopy. Journal of Applied Physics, 2008. 103(9): p. 093715.
61. R., Marcilla, et al., Light-emitting electrochemical cells using polymeric ionic liquid/polyfluorene blends as luminescent material. Applied Physics Letters, 2010. 96(4): p. 043308.
62. J., Fang, P. Matyba, and L. Edman, The Design and Realization of Flexible, Long-Lived Light-Emitting Electrochemical Cells. Advanced Functional Materials, 2009. 19(16): p. 2671-2676.
63. Y. Hu, and J. Gao, Cationic effects in polymer light-emitting electrochemical cells. Applied Physics Letters, 2006. 89(25): p. 253514. |