博碩士論文 102226601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.145.34.51
姓名 肖帥(Shuai Xiao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 剪切干涉術在全像儲存系統同差檢測中的應用
(Homodyne Detection of Holographic Optical Storage Technique using Shearing Interferometer)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文提出一種高效、高品質之影像讀取方式,主要應用於同軸全像光學儲存系統之影像讀取端,其最為特別之處在於對於多階的相位分佈訊號,只需一次的影像讀取便可以讀出影像的相位資訊,並可消除不同像素間的絕對相位差,在縮短影像讀取時間的同時仍可讀出高品質之影像,可以大大提升系統之效能。
摘要(英) This thesis presents an image reading way of highly efficient and high quality, it mainly used in image read of the coaxial holographic optical storage systems. The most special point is, for the multistage phase distribution signal, the image phase information can be read out by just once image reading, and the absolute phase difference between different pixels can be eliminated as well. It has the ability of shortening the time of image reading with high quality, which could greatly promote the effectiveness of the system.
關鍵字(中) ★ 全像儲存系統
★ 同差檢測
★ 剪切干涉術
★ 相位資訊
關鍵字(英) ★ Holographic Optical Storage System
★ Homodyne Detection
★ Shearing Interferometer
★ Phase Information
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖索引 ix
表索引 xii
第一章 緒論 1
1.1 全像系統之發展 1
1.2 同差檢測之發展 3
1.3 研究動機與挑戰 4
1.4 論文大綱 5
第二章 原理介紹 7
2.1 全像術理論與介紹 7
2.2 同差檢測法的介紹 9
2.2.1 四步相移數位全像術 12
2.2.2 正交同差檢測法 13
2.3 橫向剪切干涉術的介紹及應用 17
2.3.1 建立在雅曼干涉儀基礎上的橫向剪切干涉架構 17
2.3.2 建立在邁克爾遜干涉儀基礎上的橫向剪切干涉架構 18
2.3.3 建立在環狀干涉儀基礎上的橫向剪切干涉架構 19
2.3.4 基於鐳射的橫向剪切干涉架構 19
2.3.5 基於繞射原理的橫向剪切干涉儀 20
2.4空間光學調製器的種類及工作原理 21
2.4.1 空間光學調制器的種類 22
2.4.2 液晶式空間光學調制器的工作原理 22
2.4.3 SLM的相位特性的量測 25
2.5 光柵的製作 32
2.5.1 光柵的製作原理 33
2.5.2 沖洗全相片的操作 34
第三章 在全像儲存系統中使用剪切干涉術提升讀出影像品質的原理、模擬及實驗 35
3.1 在全像儲存系統中使用剪切干涉術提升讀出影像品質的原理 35
3.2 實驗方法(一) 41
3.2.1 實驗原理 41
3.2.2 實驗架構 42
3.2.3 實驗過程、結果及分析 44
3.2.4 實驗可改進部分 47
3.3 實驗方法(二) 47
3.3.1 實驗原理 47
3.3.2 實驗架構 48
3.3.3 實驗過程、結果及分析 49
3.3.4 實驗可改進部分 52
3.4 實驗方法(三) 53
3.4.1 實驗原理 53
3.4.2 實驗架構 53
3.4.3 實驗過程、結果及分析 55
3.4.4 實驗可改進部分 63
3.5 四階編碼部分 63
3.5.1 四階編解碼方式 64
3.5.2 四阶编码的容量估算 65
3.5.3 實驗架構 65
3.5.4 實驗過程、結果及分析 66
3.5.5 實驗可改進部分 72
第四章 結論及展望 73
參考文獻 75
中英文名詞對照表 79
附錄 83
參考文獻 [1] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
[2] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963).
[3] H. Coufal, D. Psaltis and G. T. Sincerbox, Eds., Holographic data storage, Berlin, Germany: Springer-Verlag, (2000).
[4] L. K. Anderson, “Holographic optical memory for bulk data storage,” Bell Lab. Record 45, 319-326 (1968).
[5] W. C. Stewart, R. S. Mezrich, L. S. Cosentino, E. M. Nagle, F. S. Wendt and R. D. Lohnman., “An experimental read-write holographic memory,” RCA Rev. 34, 3-44 (1973).
[6] N. Nishida, M. Sakaguchi and F. Saito, “Holographic coding plate: a new application of holographic memory,” Appl. Opt. 12,1663-1674 (1973).
[7] W. H. Strehlow, R. L. Dennison and J. R. Packard, “Holographic data store,” J. Opt. Soc. Am. 64, 543-544 (1974).
[8] L. d’Auria, J. P. Huignard, C. Slezak, and E. Spitz, “Experimental holographic read-write memory using 3-D storage,” Appl. Opt. 13, 808-818 (1974).
[9] A. Bardos, “Wideband holographic recoder,” Appl. Opt. 13, 832-840 (1974).
[10] K. K. Sutherlin, J. P. Lauer and R. W. Olenick, “Holoscan: a commercial holographic ROM,” Appl. Opt. 13, 1345-1354 (1974).
[11] Y. Tsunoda, K. Tatsuno, K. Kataoka, and Y. Takeda, “Holographic video disk: an alternative approach to optical videodisks,” Appl. Opt. 15, 1398-1403 (1976).
[12] K. Kubota, Y. Ono, M. Kondo, S. Sugama, N. Nishida, and M. Sakaguchi, “Holographic disk with high data transfer rate: its application to an audio response memory,” Appl. Opt. 19, 944-951(1980).
[13] Isao Satoh, Makoto Kato, Katsuyuki Fujito, and Fumikazu Tateishi, “Holographic memory system for Kanji character generation,” Appl. Opt. 28, 2634-2640 (1989).
[14] J. Heanue, M. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
[15] G Zhou, Y Qiao, F Mok and D Psaltis, “A holographic memory product for fingerprint identification,” Opt. Photonics News 43 (1996).
[16] Ian McMichael, William Christian, David Pletcher, Tallis Y. Chang, and John H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375-2379 (1996).
[17] M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, and G. Wittmann, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360-2374 (1996).
[18] Geoffrey W. Burr, Jonathan Ashley, Hans Coufal, Robert K. Grygier, John A. Hoffnagle, C. Michael Jefferson, and Brian Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639-641 (1997).
[19] R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, and G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509-1513 (1997).
[20] Sergei S. Orlov, William Phillips, Eric Bjornson, Yuzuru Takashima, Padma Sundaram, Lambertus Hesselink, Robert Okas, Darren Kwan, and Raymond Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[21] Allen Pu ; Robert Denkewalter ; Demetri Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737 (1997)
[22] Hideyoshi Horimai and Xiaodi Tan, “Hograpc information storage system: today and future,” IEEE Trans. Magn. 43, 943-947 (2007).
[23] R. M. Gagliardi, S. Karp, Optical Communications, Wiley-Interscience, 2nd ed. (1995).
[24] T. C. Lee, Reissued U.S. Patent Re. 30,166, “Heterodyne Readout Holographic Memory”, December 11, 1979.
[25] T. C. Lee, U. S. Patent 3,720,453, “Differential Readout Holographic Memory”, March 13,1973.
[26] H. Horimai, U. S. Patent 7,065,032 B2, “Apparatus and Method for Recording/Reproducing Optical Information,” June 20, 2006.
[27] J. Goodman, Introduction to Fourier Optics, (2008).
[28] 黃奕豪,微型化數位全像顯微鏡,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年六月.
[29] H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
[30] H. R. Carleton and W. T. Maloney, “A balanced optical heterodyne detector”, Appl. Opt. 7 (6), 1241 (1968).
[31] J. H. McElroy, “Infrared heterodyne solar radiometry”, Appl. Opt. 11 (7), 1619 (1972).
[32] Yoichi Fujii, Jun-ichiro Yamashita, Susumu Shikata, and Shigebumi Saito, “Incoherent optical heterodyne detection and its application to air pollution detection”, Appl. Opt. 17 (21), 3444 (1978).
[33] H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection”, Opt. Lett. 8 (3), 177 (1983).
[34] R. Stierlin, R. Bättig, P. D. Henchoz, HP Weber, “Excess-noise suppression in a fibre-optic balanced heterodyne detection system”, Opt. Quantum Electron. 18 (6), 445 (1986).
[35] T. Okoshi, “Recent advances in coherent optical fiber communications systems”, J. Lightwave Commun. 5 (1), 44 (1987).
[36] M. J. Collett, R. Loudon and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection”, J. Mod. Opt. 34 (6-7), 881 (1987).
[37] Kevin Curtis, Lisa Dhar, Adrian Hill, William Wilson and Mark Ayres, “Holographic Data Storage: From Theory to Practical Systems,” Chapter 12.
[38] Mark Ayres and Kevin Curtis, “Future Data Channel Research,” Chapter 12.
[39] H. Mikami, T. Shimano, H. Kudo, J. Hashizume and H. Miyamoto, “Read-out signal amplification by homodyne detection scheme,” Joint International Symposium on Optical Memories and Optical Data Storage, Waikoloa Hawaii, July (2008), paper TuA01.
[40] Sunao Aoki, Masahiro Yamada and Tamotsu Yamagami, “A novel deformable mirror for spherical aberration compensation,” Joint International Symposium on Optical Memories and Optical Data Storage, Waikoloa Hawaii, July (2008), paper TuB02.
[41] A.M. van der Lee and E. Altewischer, “Drive considerations for multi-layer discs,” International Symposium on Optical Memories Takamatsu, Japan, October (2006), paper Mo-C-05.
[42] K. Tanaka, M. Hara, K. Tokuyama, K. Takasaki, H. Okada, Y. Okamoto, H. Mori, A. Fukumoto and K. Okada, “Experimental verification of coherent addition technique for coaxial holographic data storage,” Optical Data Storage Conference, Florida (2009).
[43] I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[44] Mark R. Ayres, Boulder, “Method for holographic data retrieval by quadrature homodyne detection,” United States Patent, US 8,233,205 B2 (2012).
[45] Murty M. V. R. K. and D. Malacara, ‘‘Some Applications of the Gas Laser as a Source of Light for the Testing of Optical Sytems,’’ Proceedings of the Conference on Photographic and Spectroscopic Optics, Tokyo and Kyoto, 1964, Japan. J. Appl. Phys., 4, Suppl. 1, 106–111 (1965).
[46] Nyssonen D. and J. M. Jerke, ‘‘Lens Testing with a Simple Wavefront Shearing Interferometer,’’ Appl. Opt., 12, 2061–2082 (1973).
[47] Murty M. V. R. K., ‘‘The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a Visible Gas Laser Source,’’ Appl. Opt., 3, 531 (1964b).
[48] Kelsall D., “Optical frequency response characteristics in the presence of spherical aberration measured by an automatically recording interferometric instrument”, Proc. Phys. Soc., 73, 465 (1959).
[49] Hariharan P. and D. Sen, ‘‘Cylic Shearing Interferometer,’’ J. Sci. Instrum., 37, 374 (1960).
[50] Murty M.V. R. K., The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a Visible Gas Laser Source,’’ Appl. Opt., 3, 531–534 (1964a).
[51] Wyant J. C., ‘‘Double Frequency Grating Lateral Shear Interferometer,’’ Appl. Opt., 12, 2057 (1973).
[52] 張耿維, 純相位繞射光學元件的設計並以液晶空間光調制器實現之, 國立中央大學光電科學與工程學系碩士論文,中華民國九十四年六月.
[53] 陳日康, 純相位式電腦全像術及全像光鉗在桿狀粒子旋轉控制之研究, 國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年六月.
[54] awawa’s lab, Direct LCD drive by AVR GPIO, http://awawa.hariko.com/avr_lcd_drive_en.html
[55] Kent edu, Different LCDs working modes,
http://www.personal.kent.edu/~mgu/LCD/ecb.htm
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2015-10-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明