博碩士論文 102328003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.142.134.166
姓名 張鈞賀(Jun-He Chang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 三維結構之微孔石墨烯於超級電容器之應用與研究
(Three-dimensional electrode self-assembly of nanoporous graphene for the binder-free and high-performance supercapacitor)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究★ 真空壓印於二維材料轉印製程之研究
★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討★ 氟化石墨烯複合材料塗層於多功能披覆之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究製作並分析一種結合微米與奈米多孔性的石墨烯三維複合電極,並整合此電極於研製超級電容及其元件的特性研究。在製作上,首先利用碳材活化技術於石墨烯片層基面上形成奈米孔(約 3 nm),並搭配凍乾技術,製作出可用於高性能超級電容器的三維微孔碳材。合成出的石墨烯,以不同溫度進行熱還原,探討其表面化態、物理及電化學性質,,而就一般疊層所製得的石墨烯電極來比較其超級電容特性,結果顯示以 400°C 還原後的樣品表現最佳,電容可達 247 F/g,而 600°C 及 800°C 的電容值相近(115 F/g),也因此,在後續的進一步改質方法測試中,以 400°C 還原之樣品為討論主軸。
在相較於一般疊層之本質石墨烯電極(電容 247 F/g),活化後的奈米孔石墨烯之電容提升至 274 F/g(增益 111%),而進一步的凍乾製程所形成的自組裝微孔電極,可進一步提升至 338 F/g(增益 137%)。此外,三微結構的石墨烯電容器,具有優異的電容維持率,僅經過活化後的奈米微孔之石墨烯電極經過 1500 次充放電測試後,維持率為 87%,與原始石墨烯電極無異,然而,結合奈米孔與微米之多孔三維結構可提升至 95%。研究發現,此效能提升可以歸因於結構的多孔結構所帶來的比表面積提升(564m2/g),石墨烯良好的導電性以及表面適當的氧化基團所提供的擬電容貢獻。此外,高速充放電的性質,來自
於這種特殊多階層的電極結構(微孔和奈米孔),形成更多離子通道,提升離子擴散的能力。本研究之新穎性在於結合兩種機制,以冷凍乾燥技術處理活化後之碳材,希望能夠基於原本兩種方法的結果,更進一步提升石墨烯的儲能性能,結果得到電容值為 374F/g(增益 151%)而維持率為 95%之石墨烯電極,表示此二機制可順利結合產出新材料,
並能滿足高功率元件之運作需求。
摘要(英) In this study, we fabricate and characterize the binder free graphene-based supercapacitor,integrated with 3D self-assemble of nanoporous graphene as a hybrid electrode by a facile approaches of activation and freeze-drying. Graphene oxide (GO) was synthesized by improved Hummer’s method, and then thermally treated at different annealing temperature in
vacuum system. On the part of optimization of reducing temperature, the physical and electrochemical properties of these reduced graphene oxide (rGO) were firstly investigated, rGO reduced at 400°C gives the specific capacitance of 247 F/g, while rGO reduced at 600°C and 800°C show the same value of 115 F/g, the following discussion would be focused on
rGO treated at 400°C.The as-prepared functionalized electrode exhibit a specific surface area(SSA) of up to 564 m2/g. The optimized condition allows us to yield a high specific capacitances of 374F/g which is 151% increased with respect to restacking graphene electrode.Moreover, the superior cycling stability (95% retention after 1500 times cycling) and rate
capabilities, suggesting the high ion permeance and electronic conductivity of this unique and multi-functional graphene electrode. The reported approach is facile, scalable and cost-effective, which is promising for the high performance graphene-based energy storage devices.
關鍵字(中) ★ 石墨烯
★ 超級電容
★ 儲能
關鍵字(英) ★ graphene
★ supercapacitor
★ energy storage
論文目次 摘要 i
Abstract ii
總目錄 iii
圖目錄 vi
表目錄 ix
第一章 緒論 1
第二章 研究背景與文獻回顧 4
2-1 超級電容器(Supercapacitors) 4
2-1-1超級電容器概述 4
2-1-2電雙層電容器之材料 5
2-1-3擬電容器之材料 5
2-1-4超級電容器之電解液 6
2-2 石墨烯材料介紹 7
2-2-1石墨烯材料特性 7
2-2-2石墨烯材料製備 9
2-2-3氧化石墨烯合成方法及機制 11
2-2-4還原氧化石墨烯(reduced graphene oxide) 12
2-3三維結構的還原氧化石墨烯 13
2-3-1概述 14
2-3-2冷凍乾燥製程 14
2-3-3三維石墨烯之應用 16
2-3-4以發泡鎳作為石墨烯電極之基材 20
2-4活化碳系材料 21
2-4-1物理性活化 21
2-4-2化學性活化 21
2-4-3硝酸活化機制 22
第三章 實驗方法與步驟 23
3-1 氧化石墨烯之製備 23
3-2氧化石墨烯之活化 23
3-3還原氧化石墨烯之電極製備 24
3-3-1 樣品定義 24
3-3-2 將氧化石墨烯吸附於發泡鎳基材 24
3-3-3 熱還原 25
3-4材料特性鑑定 25
3-4-1形貌之分析 25
3-4-2 結晶結構分析 27
3-4-3 表面元素成分分析 27
3-4-4甲基藍吸附測試 27
3-4-5 接觸角量測 28
3-4-6 四點探針量測 29
3-5電化學測試實驗流程 29
3-5-1 循環伏安法 (cyclic voltammetry, CV) 29
3-5-2 計時電位法 (chronopotentiometry, CP) 29
3-5-3 交流阻抗分析(electrochemical impedance spectroscopy, EIS) 29
第四章 結果與討論 31
4-1材料特性分析 31
4-1-1 表面形貌觀察─原始氧化石墨烯(pristine graphene oxide, GO) 31
4-1-2表面形貌觀察─活化氧化石墨烯(activated graphene oxide, AGO) 32
4-1-3表面形貌觀察─超電容電極 35
4-1-4 表面元素成分分析 38
4-1-5碳材料缺陷結構分析 40
4-1-6 不同溫度之熱處理對石墨烯物理性質影響 42
4-2電化學特性量測 43
4-2-1 前測試 43
4-2-2討論不同溫度之熱處理對石墨烯電化學特性之影響 45
4-2-3討論立體結構對石墨烯電化學特性之影響 48
4-2-4討論化學活化對於石墨烯電化學特性之影響 50
4-2-5 討論同時進行化學活化以及三維結構對石墨烯電化學特性之影響 52
4-2-6 電化學特性之綜合比較 54
第五章 結論 59
第六章 未來工作 60
參考文獻 61
參考文獻 1. Energy and Climate Outlook. 2014.
2. Application charts for nanoclays, graphene and nanocoatings. http://www.nanowerk.com/news/newsid=23444.php.
3. Marcano, D.C., et al., Improved Synthesis of Graphene Oxide. ACS Nano, 2010. 4(8): p. 4806.
4. Raccichini, R., et al., The role of graphene for electrochemical energy storage. Nat Mater, 2015. 14(3): p. 271.
5. Wang, H., et al., Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications, 2009. 11(6): p. 1158.
6. He, S. and W. Chen, High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. Journal of Power Sources, 2014. 262: p. 391.
7. Wang, C.-C., H.-C. Chen, and S.-Y. Lu, Manganese Oxide/Graphene Aerogel Composites as an Outstanding Supercapacitor Electrode Material. Chemistry – A European Journal, 2014. 20(2): p. 517.
8. Padmanathan, N., K.M. Razeeb, and S. Selladurai, Hydrothermal synthesis of carbon- and reduced graphene oxide-supported CoMoO4 nanorods for supercapacitor. Ionics, 2014. 20(9): p. 1323.
9. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183.
10. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666.
11. Reina, A., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 2008. 9(1): p. 30.
12. Li, X., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312.
13. Su, C.-Y., et al., Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. ACS Nano, 2010. 4(9): p. 5285.
14. Dreyer, D.R., et al., The chemistry of graphene oxide. Chemical Society Reviews, 2010. 39(1): p. 228.
15. Staudenmaier, L., Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft, 1898. 31(2): p. 1481.
16. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339.
17. Kuila, T., et al., Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale, 2013. 5(1): p. 52.
18. Schniepp, H.C., et al., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B, 2006. 110(17): p. 8535.
19. Qiu, L., et al., Biomimetic superelastic graphene-based cellular monoliths. Nat Commun, 2012. 3: p. 1241.
20. Wu, Z.-S., et al., Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors. Advanced Materials, 2012. 24(37): p. 5130.
21. Xu, Y., et al., Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun, 2014. 5: p. 4554.
22. Zhao, Y., et al., Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater, 2013. 25(4): p. 591.
23. Xiao, L., et al., Self-assembled Fe(2)O(3)/graphene aerogel with high lithium storage performance. ACS Appl Mater Interfaces, 2013. 5(9): p. 3764.
24. Yang, S., et al., Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett, 2013. 13(4): p. 1596.
25. Chen, W., et al., Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater, 2011. 23(47): p. 5679.
26. Chang, Y.-H., et al., Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams. Advanced Materials, 2013. 25(5): p. 756.
27. Ma, G., et al., In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. Journal of Power Sources, 2013. 229: p. 72.
28. Ren, L., K.S. Hui, and K.N. Hui, Self-assembled free-standing three-dimensional nickel nanoparticle/graphene aerogel for direct ethanol fuel cells. Journal of Materials Chemistry A, 2013. 1(18): p. 5689.
29. Ahn, H.S., et al., Self-assembled foam-like graphene networks formed through nucleate boiling. Sci Rep, 2013. 3: p. 1396.
30. Li, J., et al., Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. Journal of Materials Chemistry A, 2014. 2(9): p. 2934.
31. Chen, M., et al., Highly conductive and stretchable polymer composites based on graphene/MWCNT network. Chemical Communications, 2013. 49(16): p. 1612.
32. Qiu, L., et al., Mechanically Robust, Electrically Conductive and Stimuli-Responsive Binary Network Hydrogels Enabled by Superelastic Graphene Aerogels. Advanced Materials, 2014. 26(20): p. 3333.
33. Chen, J., et al., Graphene Hydrogels Deposited in Nickel Foams for High-Rate Electrochemical Capacitors. Advanced Materials, 2012. 24(33): p. 4569.
34. Wang, S., et al., Room-Temperature Synthesis of Soluble Carbon Nanotubes by the Sonication of Graphene Oxide Nanosheets. Journal of the American Chemical Society, 2009. 131(46): p. 16832.
35. Zhang, H., et al., Thermal Treatment Effects on Charge Storage Performance of Graphene-Based Materials for Supercapacitors. ACS Applied Materials & Interfaces, 2012. 4(6): p. 3239.
36. Lee, J.H., et al., Restacking-Inhibited 3D Reduced Graphene Oxide for High Performance Supercapacitor Electrodes. ACS Nano, 2013. 7(10): p. 9366.
37. Hu, J., et al., Graphene with three-dimensional architecture for high performance supercapacitor. Carbon, 2014. 67: p. 221.
38. Wang, X., et al., Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat Commun, 2013. 4: p. 2905.
39. Wu, Z.-S., et al., Three-Dimensional Graphene-Based Macro- and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage. Journal of the American Chemical Society, 2012. 134(48): p. 19532.
40. Lee, S.H., et al., Three-Dimensional Self-Assembly of Graphene Oxide Platelets into Mechanically Flexible Macroporous Carbon Films. Angewandte Chemie International Edition, 2010. 49(52): p. 10084.
41. Wen, Z., et al., Crumpled Nitrogen-Doped Graphene Nanosheets with Ultrahigh Pore Volume for High-Performance Supercapacitor. Advanced Materials, 2012. 24(41): p. 5610.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2015-10-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明