以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:38 、訪客IP:52.15.37.74
姓名 陳文棟(Wen-Tung Chen) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 平板式微流道熱管散熱效能之研究
(Investigation of the thermal performance of flat micro-grooves heat pipe)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 目前高功率LED在應用上難免會遇到熱的問題,熱效應不僅會影響LED的發光效率及其使用的壽命,還會改變其發射波長。且一般LED在小區域內擁有1W的熱量,對於一般傳導、強制空冷及熱電元件等方法的散熱片而言,熱量並沒有辦法有效的傳出,因此藉由熱管內流體的兩相轉換去達到熱擴散的效果,進而降低LED的junction temperature。但目前市售的圓柱狀熱管對於平面熱源會遇到接觸上的問題,而平板式熱管的優點就是可以降低與熱源的接觸熱阻,使得熱量得到良好的傳遞。且平面式熱管在內部工作流體的使用上,不僅可以增加內部流體的填充量,並應用多條流道增加流體回流量。
本實驗製作出輻射狀及平行流道兩種不同流道形式的熱管,去觀察其產生的熱擴散效果的差異性。熱源置中的輻射狀結構之平版式熱管,利用蒸汽流將熱量從中央擴散至兩側,達到熱擴散的效果。但是實際上熱管並沒有作動的效果,主要是熱管的溫度受控於面積較大的冷卻端溫度,使得熱管內部的工作流體無法到達沸騰的工作溫度。而平行流道的熱管,是由一端加熱汽化後將熱量帶至另一端進行冷卻,進而提升散熱面積。由實驗可知在冷熱端分開的狀況下,皆有沸騰的現象產生,而填充量30%時沸騰後所降低的熱阻值比填充量63%來的高,且較不受限於熱管的擺放角度。摘要(英) The high power LED possesses of high brightness, environmental protection, and energy saving. But owing to the heat effect, this LED would be reduced life time and efficiency, and result in the wavelength shift. The general heat sink cannot diffuse heat effectively for the small size LED. Therefore, using the main characteristic of two-phase changed of heat pipe can achieve the heat diffusion and reduce the junction temperature of LED. The cylinder heat pipe is not convenient for contacting with the flat heat source. Thus flat heat pipe is used to increase contact area and to decrease the contact resistance between heat source and heat pipe. The flat heat pipes not only increase the fill of working fluid, but also use more grooves to transport liquid back to hot point.
In this case, we fabricated different shape grooves flat heat pipes, radial grooves heat pipe and parallel grooves heat pipe, to observe the heat transportation of heat pipes. The heat transfer of radial heat pipe starts from the center to edge by vaporizing working fluid to enhance diffusing area. But the radial heat pipe has no significant effect in reducing the temperature of heat source. The main reason is that the temperature of heat pipe is controlled by cold point, thus the working fluid cannot boil. The heat transport of parallel heat pipe starts from edge to edge, so that the diffusion area of parallel heat pipe can be enlarged. In parallel case, the working fluid can boil under different liquid fills and incline angles, thus the thermal resistance is reduced effectively. The reducing thermal resistance of 30% fill is better than 63% fill, and 30% fill is no limited by gravity force.關鍵字(中) ★ 熱管 關鍵字(英) ★ heat pipe 論文目次 摘要......................................... Ⅰ
Abstract..................................... Ⅱ
目錄......................................... Ⅴ
圖目錄....................................... Ⅶ
表目錄....................................... Ⅹ
符號表....................................... XI
第一章 導論........................................ 1
1-1 前言........................................ 1
1-2 研究動機.................................... 3
1-3 文獻回顧.................................... 6
第二章 熱管之基礎理論.............................. 8
2-1 作動原理.................................... 8
2-2 熱傳極限.................................... 10
2-3 熱管設計.................................... 17
第三章 熱管製作.................................... 19
3-1 矽基材之熱管製作............................ 19
3-2 金屬加工.................................... 27
3-3 抽真空及填充工作流體........................ 28
第四章 熱管之量測結果與討論........................ 30
4-1 量測儀器.................................... 30
4-2 工作流體之選用.............................. 32
4-3 量測結果與觀察.............................. 33
4-4 綜合討論.................................... 52
第五章 結論........................................ 55
5-1 結論........................................ 55
5-2 未來展望.................................... 58
參考文獻........................................... 59參考文獻 [1] Jeff Y. Tsao, “Solid-state Lighting Lamps, Chips, and Materials for Tomorrow”, IEEE Circuit & Devices Magazine, vol. 20, issue 3, pp. 28~37, 2004.
[2] Jeong Park and Chin C. Lee, “An Electrical Model With Junction Temperature for Light-Emitting Diodes and the Impact on Conversion Efficiency”, IEEE Electron Device Letters, vol. 26, no. 5, pp. 308~310, 2005.
[3] Nadarajah Narendran and Yimin Gu, “Life of LED-Based White Light Sources”, IEEE/OSA Journal of Display Technology, vol. 1, no. 1, pp. 167~171, 2005.
[4] Eugene Hong and Nadarajah Narendran, “A Method for Projecting Useful Life of LED Lighting Systems”, Third International Conference on Solid State Lighting, Proceedings of SPIE, vol. 5187, pp. 93~99, 2004.
[5] S.W. Kang and D. Huang, “Fabrication of star grooves and rhombus grooves micro heat pipe”, Journal of Micromechanics and Microengineering, vol. 12, pp. 525~531, 2002.
[6] M Le Berre, S. Launay, V. Sartre, and M. Lallenmand, “Fabrication and experimental investigation of silicon micro heat pipes for cooling electronics”, Journal of Micromechanics and Microengineering, vol. 13, pp. 436~441, 2003.
[7] S. Launay, V. Sartre, and M. Lallemand, “Experumental study on silicon micro-heat pip arrays”, Applied Thermal Engineering, vol. 24, pp. 233~243, 2004.
[8] D.A Benson, R.T. Mitchell, M.R. Tuck, D.W. Palmer, and G.P. Peterson, “Ultrahigh-Capacity Micromachined Heat Spreaders”, Microscale Thermophysical Engineering, vol. 2, pp. 21-30, 1998.
[9] Charlotte Gillot, Yvan Avenas, Nathalie Cezac, Gilles Poupon, Christian Schaefffer, and Elise Fouriner, “Silicon Heat Pipes Used as Thermal Spreaders”, IEEE Transactions on Components and Packaging Technology, vol. 26, no. 2, 2003.
[10] A. Lai, C.Gillot, M. Ivanova, Y. Avenas, C. Louis, C. Schaeffer, and E. Fournier, “Thermal Characterization of Flat Silicon Heat Pipes”, 20th IEEE SEMI-THERM Symposium, 2004.
[11] 李昌駱, “置中熱源對熱管散熱增益之研究”, 國立成功大學工程科學系碩士論文, 2004.
[12] 陳泓志, “輻射狀微流道熱管之研製”,淡江大學機械工程學系碩士班碩士論文, 2001.
[13] S.W. Kang, S.H. Tsai, and H.C. Chen, “Fabrication and test of radial grooves micro heat pipes”, Applied Thermal Engineering, vol. 22, pp. 1559~1568, 2002.
[14] H.T. Chien, D.S. Lee, P.P. Ding, S.L. Chiu, and P.H. Chen, “Disk-Shaped Miniature Heat Pipe (DMHP) With Radiating Micro Grooves for a TO Can Laser Diode Package”, IEEE Transactions on Components and Packaging Technology, vol. 26, no.3, 2003.
[15] 依日光, “熱管技術理論實務”,復漢出版社, 1986.
[16] A. Faghri, “Heat Pipe Science and Technology”, Washington, 1995.
[17] Marc Madou, “Fundamental of Microfabrication”, CRC, 1997.
[18] 謝嘉銘, “TMAH 非等向性濕蝕刻特性之研究與應用”,國立台灣大學機械工程學研究所碩士論文, 2000.
[19] http://www.ee.byu.edu/cleanroom/wet_etch.phtml
[20] Jiang Wei, “A new approach of creating Au-Sn solder bumps from electroplating”, Cryst. Res. Technol., vol. 41, no. 2, 2006.
[21] http://zenstoves.net
[22] Incropera and DeWitt, “Fundamentals of Heat and Mass Transfer”, Wiley, New York, 1997.指導教授 張正陽(Jeng-Yang Chang) 審核日期 2006-10-17 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare