參考文獻 |
1. Joo Kim, D. (2009). Strain rate effect on high performance fiber reinforced cementitious composites using slip hardening high strength deformed steel fibers. ProQuest.
2. Joo Kim, D., El-Tawil, S., & Naaman, A. E. (2009). Rate-dependent tensile behavior of high performance fiber reinforced cementitious composites. Materials and Structures, 42(3), 399-414.
3. Wille, K., Kim, D. J., & Naaman, A. E. (2011). Strain-hardening UHP-FRC with low fiber contents. Materials and Structures, 44(3), 583-598.
4. Habel, K., Viviani, M., Denarié, E., & Brühwiler, E. (2006). Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC). Cement and Concrete Research, 36(7), 1362-1370.
5. Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and concrete research, 25(7), 1501-1511.
6. Rossi, P. (1997). High performance multimodal fiber reinforced cement composites (HPMFRCC): The LCPC experience. ACI materials journal, 94(6), 478-483.
7. Canbolat, B. A., Parra-Montesinos, G. J., & Wight, J. K. (2005). Experimental study on seismic behavior of high-performance fiber-reinforced cement composite coupling beams. ACI Structural Journal, 102(1), 159-166.
8. Henager, C. H. (1977). Steel fibrous-ductile concrete joint for seismic-resistant structures. ACI Special Publication, 53, 371-379.
9. Pandor, D. A. (1994). Behavior of high strength fiber reinforced concrete beams in shear (Doctoral dissertation, Massachusetts Institute of Technology).
10. Wang, Y. C., & Lee, M. G. (2007). Ultra-high strength steel fiber reinforced concrete for strengthening of RC frames. J Mar Sci Technol, 15(3), 210-218.
11. Paulay, T., Priestley, M. J. N., & Synge, A. J. (1982, July). Ductility in earthquake resisting squat shear walls. ACI Journal Proceedings, 79(4).
12. Hidalgo, P. A., Ledezma, C. A., & Jordan, R. M. (2002). Seismic behavior of squat reinforced concrete shear walls. Earthquake Spectra, 18(2), 287-308.
13. Maier, J., & Thurlimann, B. (1991). Shear Wall Tests. In Preliminary Proceedings, International Workshop on Concrete Shear in Earthquake.
14. Burgueño, R., Liu, X., & Hines, E. M. (2010). Inelastic Web Crushing Capacity of High-Strength-Concrete Structural Walls. Michigan State University, Department of Civil and Environment Engineering.
15. Athanasopoulou, A. (2010). Shear strength and drift capacity of reinforced concrete and high-performance fiber reinforced concrete low-rise walls subjected to displacement reversals. Doctoral dissertation, The University of Michigan.
16. Christidis, K., Vougioukas, E., & Trezos, K. G. (2013). Seismic assessment of existing RC shear walls non-compliant with current code provisions. Magazine of Concrete Research, 65(17), 1059-1072.
17. Liang, X., Che, J., Yang, P., & Deng, M. (2013). Seismic Behavior of High-Strength Concrete Structural Walls with Edge Columns. ACI Structural Journal, 110(6), 953.
18. Parra-Montesinos, G. J., Canbolat, B. A., & Jeyaraman, G. (2006, April). Relaxation of confinement reinforcement requirements in structural walls through the use of fiber reinforced cement composites. In 8th National Conference on Earthquake Engineering.
19. Kim, K., & Parra-Montesinos, G. J. (2003). Behavior of HPFRCC low-rise walls subjected to displacement reversals. High Performance Fiber Reinforced Cement Composites (HPFRCC 4), 505-515.
20. Buzzini, D., Dazio, A., & Trüb, M. (2006). Quasi-static cyclic tests on three hybrid fibre concrete structural walls. Institute of Structural Engineering, Swiss Federal Institute of Technology, (No. 297).
21. Sittipunt, C., & Wood, S. L. (1995). Influence of web reinforcement on the cyclic response of structural walls. ACI Structural Journal, 92(6), 745-756.
22. ACI Committee. (2014). Building code requirements for structural concrete (ACI 318-14) and commentary (ACI 318R-14). American Concrete Institute.
23. Hsu, T. T., & Mo, Y. L. (1985, November). Softening of concrete in low-rise shearwalls. In ACI Journal Proceedings, 82( 6), 883–889.
24. Gupta, A., & Rangan, B. V. (1998). High-strength concrete (HSC) structural walls. ACI structural journal, 95(2), 194–204.
25. Hwang, S. J., Fang, W. H., Lee, H. J., & Yu, H. W. (2001). Analytical Model for Predicting Shear Strengthof Squat Walls. Journal of Structural Engineering, 127(1), 43-50.
26. Hwang, S. J., & Lee, H. J. (1999). Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joints for seismic resistance. ACI Structural Journal, 96(5), 846–857.
27. Hwang, S. J., & Lee, H. J. (2000). Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance. ACI Structural Journal, 97(1), 35–44.
28. Yu, H. W., & Hwang, S. J. (2005). Evaluation of softened truss model for strength prediction of reinforced concrete squat walls. Journal of engineering mechanics, 131(8), 839-846.
29. Paulay, T., & Priestley, M. J. N. Seismic design of reinforced concrete and masonry buildings. 1992. ISBN-10, 471549150.
30. Hwang, S. J., & Lee, H. J. (2002). Strength prediction for discontinuity regions by softened strut-and-tie model. Journal of Structural Engineering, 128(12), 1519-1526.
31. Schafer, K. (1996). Strut-and-tie models for the design of structural concrete. National Cheng Kung University, Department of Civil Engineering.
32. Yun, H. D., Choi, C. S., & Lee, L. H. (2004). Earthquake performance of high-strength concrete structural walls with boundary elements. In 13 WCEE: 13 th World Conference on Earthquake Engineering Conference Proceedings.
33. Benjamin, J. R., & Williams, H. A. (1957). Closure of" The Behavior of One-Story Reinforced Concrete Shear Walls". ASCE Structural Journal, 83(3), 1-49.
34. Hirosawa, M. (1975). Past experimental results on reinforced concrete shear walls and analysis on them. Building Research Institute, Ministry of Construction.
35. Barda, F., Hanson, J. M., & Corley, W. G. (1977). Shear strength of low-rise walls with boundary elements. ACI Special Publication, 53.
36. Cardenas, A. E., Russell, H. G., & Corley, W. G. (1980). Strength of low-rise structural walls. ACI Special Publication, 63.
37. Mo, Y. L. (1993). Dynamic tests on reinforced concrete shearwalls. National Science Council Project Rep. No. NSC81-0410-E006, 521.
38. Lefas, I. D., Kotsovos, M. D., & Ambraseys, N. N. (1990). Behavior of reinforced concrete structural walls: strength, deformation characteristics, and failure mechanism. ACI Structural Journal, 87(1), 23–31.
39. DENG, M. K., LIANG, X. W., & LIU, Q. S. (2006). Experimental study on seismic behavior of high performance concrete shear wall with new strategy of transverse confining stirrup. Journal of Xi′an University of Architecture & Technology (Natural Science Edition), 4, 018.
40. Farvashany, F. E., Foster, S. J., & Rangan, B. V. (2008). Strength and deformation of high-strength concrete shearwalls. ACI structural journal, 105(1).
41. ACI Committee 374. (2005). Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary (ACI 374.1–05).
42. Standard, B. (2005). Eurocode 8: Design of structures for earthquake resistance.
43. Salonikios, T. N., Kappos, A. J., Tegos, I. A., & Penelis, G. G. (2000). Cyclic load behavior of low-slenderness reinforced concrete walls: failure modes, strength and deformation analysis, and design implications. ACI Structural Journal, 97(1).
44. 顏偉閔,(2014),「形狀記憶合金於抗震RC耦合牆系統之初步研究」,國立中央大學土木工程系,碩士論文。
45. 闕辰宇,(2015),「高強度鋼筋加勁之超高性能纖維混凝土懸臂梁於反覆載重作用下之行為」,國立中央大學土木工程系,碩士論文。
46. 洪詩晴,(2015),「高強度鋼筋於低矮剪力牆往復載重行為研究」,國立台灣科技大學營建工程系,碩士論文。
47. 余明松,(2002),「低型RC剪力牆-構架互制實驗研究」,國立成功大學土木工程系,碩士論文。
48. 涂耀賢,(2005),「低矮型RC牆暨構架之側向載重位移曲線預測研究」,國立台灣科技大學營建工程系,博士論文。
49. 莊育泰,(2012),「劣化RC牆生命週期耐震能力研究」,國立台灣科技大學營建工程系,碩士論文。
50. 劉傳柏,(2006),「RC牆非線性行為模擬與實體試驗成果比較」,中原大學土木工程學系,碩士論文。 |