參考文獻 |
[1] L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data
storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[2] P. J. van Heerden, “Theory of optical information storage in
solids,” Appl. Opt. 2, 393-400 (1963).
[3] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
[4] E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).
[5] L. d’Auria, J. P. Huignard and E. Spitz, “Holographic read-write
memory and capacity enhancement by 3-D storage,” IEEE Trans.
Magn. MAG-9, 83-94 (1973).
[6] H. Coufal, D. Psaltis and G. T. Sincerbox, Eds., Holographic data
storage, Berlin, Germany: Springer-Verlag, 2000.
[7] L. K. Anderson, “Holographic optical memory for bulk data
storage,” Bell Lab. Record 45, 319-326 (1968).
[8] W. C. Stewart et al., “An experimental read-write holographic
memory,” RCA Rev. 34, 3-44 (1973).
[9] N. Nishida, M. Sakaguchi and F. Saito, “Holographic coding plate:
a new application of holographic memory,” Appl. Opt. 12,
1663-1674 (1973).
[10] W. H. Strehlow, R. L. Dennison and J. R. Packard, “Holographic
data store,” J. Opt. Soc. Am. 64, 543-544 (1974).
[11] L. d’Auria et al., “Experimental holographic read-write memory
using 3-D storage,” Appl. Opt. 13, 808-818 (1974).
[12] A. Bardos, “Wideband holographic recoder,” Appl. Opt. 13,
832-840 (1974).
[13] K. K. Sutherlin, J. P. Lauer and R. W. Olenick, “Holoscan: a
commercial holographic ROM,” Appl. Opt. 13, 1345-1354 (1974).
[14] Y. Tsunoda et al., “Holographic video disk: an alternative approach
to optical videodisks,” Appl. Opt. 15, 1398-1403 (1976).
[15] K. Kubota et al., “Holographic disk with high data transfer rate: its
application to an audio response memory,” Appl. Opt. 19, 944-951
(1980).
[16] I. Sato et al., “Holographic memory system for Kanji character
generation,” Appl. Opt. 28, 2634-2640 (1989).
[17] J. Heanue, M. Bashaw and L. Hesselink, “Volume holographic
storage and retrieval of digital data,” Science 265, 749-752 (1994).
[18] G. Zhou et al., “A holographic memory product for fingerprint
identification,” Opt. Photonics News 43, (1996).
[19] I. Michael et al., “Compact holographic storage demonstrator with
rapid access,” Appl. Opt. 35, 2375-2379 (1996).
[20] M. P. Bernal et al., “A precision tester for studies of holographic
optical storage materials and recording physics,” Appl. Opt. 35,
2360-2374 (1996).
[21] G. W. Burr et al., “Modulation coding for pixel-matched
holographic data storage,” Opt. Lett. 22, 639-641 (1997).
[22] R. M. Shelby et al., “Pixel-matched holographic data storage with
megabit pages,” Opt. Lett. 22, 1509- (1997).
[23] S. S. Orlov et al., “High-transfer-rate high-capacity holographic
disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[24] “Holographic information storage system: today and future,” IEEE
Trans. Magn. 43, 943-947 (2007).
[25] J. Ashley et al., “Holographic data storage,” IBM J. Res. Develop.
44, 341-368 (2000).
[26] E. Hecht, Optics, 4th ed., Addison Wesley, 2002.
[27] J. W. Goodman, Introduction to Fourier optics, 2nd ed.,
McGraw-Hill Book Co., Inc., 2002.
[28] R. J. Collier, C. B. Burckhardt and L. H. Lin, Optical holography,
1st ed., Academic Press, 1971.
[29] W. R. Klein, “Theoretical efficiency of Bragg devices,” Proc. IEEE
54, 803 (1966).
[30] S. Yin et al., “Wavelength-multiplexed holographic storage in a
sensitive photorefractive crystal using a visible-light tunable
diode-laser,” Opt. Commun. 101, 317-321 (1993).
[31] C. B. Burckhardt, “Use of a random phase mask for the recording
of Fourier transform holograms of data masks,” Appl. Opt. 9,
695-700 (1970).
[32] Y. Nakayama and M. Kato, “Diffuser with pseudorandom phase
sequence,” J. Opt. Soc. Am. 69, 1367-1372 (1979).
[33] J. H. McLeod, “The axicon: A new type of optical element,” J. Opt.
Soc. Am. 44, 592-597 (1954).
[34] M. P. Bernal et al., “Phase shifting element for optical information
storing systems,” AM9-97-084, U. S. Patent (1998).
[35] 林螢光,光電子學-原理、元件與應用,全華科技圖書,民國
八十八年。
[36] 施敏,半導體元件物理與製作技術,第二版,國立交通大學出
版社,民國九十一年。
[37] S. S. Orlov, “Overview of holographic recording materials for
major system architectures in holographic data storage
applications,” presented at the National Storage Industry
Consortium Int. Workshop Holographic Data Storage, Nice, France,
1999.
[38] G. Burr et al., “Experimental evaluation of user capacity in
holographic data storage system,” Appl. Opt. 37, 5431-5443
(1998).
[39] F. Ito, K. I. Kitayama and H. Oguri, “Compensation of fiber
holographic image distortion caused by intrasignal photorefractive
coupling by using a phase conjugate mirror,” Opt. Lett. 17,
215-217 (1992).
[40] M. C. Bashaw, A. Aharoni and L. Hesselink, “Alleviation of image
distortion due to striations in a photorefractive medium using a
phase-conjugated reference wave,” Opt. Lett. 17, 1149-1151
(1992).
[41] F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for
holographic memory systems,” Opt. Lett. 21, 896-899 (1996).
[42] A. Yariv et al., “Holographic fixing, readout, and storage dynamics
in photorefractive materials,” Opt. Lett. 20, 1334-1336 (1995).
[43] E. Kratzig and R. Orlowski, Appl. Phys. 67, 133 (1978).
[44] J. F. Heanue et al., “Digital holographic storage system
incorporating thermal fixing in lithium niobate,” Opt. Lett. 21,
1615-1617 (1996).
[45] H. Gunther et al., “Two-color holography in reduced nearstoichiometric
lithium niobate,” Appl. Opt. 37, 7611-7623 (1998).
[46] D. A. Waldman, H. Y. S. Li, and M. G. Horner, “Volume
shrinkage in slant fringe gratings of a cationic ring-opening volume
hologram recording material,” J. Imag. Sci. Technol. 41, 497-514
(1997).
[47] L. Dhar et al., “Holographic storage of multiple high-capacity
digital data pages in thick photopolymer systems,” Opt. Lett. 23,
1710-1722 (1998).
[48] C. Gu and F. Dai, “Cross-talk noise reduction in volume
holographic storage with extended recording reference,” Opt. Lett.
20, 2336-2338 (1995).
[49] J. F. Heanue, K. Gurkan, and L. Hesselink, “Signal detection for
page-access optical memories with intersymbol interference,” Appl.
Opt. 35, 2431–2438 (1996).
[50] M. A. Neifeld and M. McDonald, “Technique for controlling
cross-talk noise in volume holography,” Opt. Lett. 21, 1298-1300
(1996).
[51] F. Dai and C. Gu, “Effect of Gaussian references on cross-talk
noise reduction in volume holographic memory,” Opt. Lett. 22,
1802-1804 (1997).
[52] M. A. Neifeld, K. M. Chugg, and B. M. King, “Parallel data
detection in page-oriented optical memory,” Opt. Lett. 21,
1481–1483 (1996).
[53] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for
digital holographic data storage,” J. Opt. Soc. Am. A 12,
2432–2439 (1995).
[54] W. C. Chou and M. A. Neifeld, “Interleaving and error correction
in volume holographic memory systems,” Appl. Opt. 37,
6951-6968 (1998).
[55] M. Hassner, U. Schwiegelshohn and S. Winograd, “On-the-fly
error correction in data storage channels,” IEEE Trans. Magn. 31,
1149-1154 (1995).
[56] V. K. Polyanskii and P. V. Polyanskii, “Holographic associative
memories with a true brightness tone rendering,” Opt. Eng. 34,
1079-1087 (1995).
[57] J. D. Roberts et al., “Analysis of error-correction constraints in an
optical disk,” Appl. Opt. 35, 3915-3924 (1996).
[58] B. J. Goertzen and P. A. Mitkas, “Error-correcting code for volume
holographic storage of a relational database,” Opt. Lett. 20,
1655-1657 (1995).
[59] B. J. Goertzen and P. A. Mitkas, “Volume holographic storage for
large relational databases,” Opt. Eng. 35, 1847-1853 (1996).
[60] M. A. Neifeld and M. McDonald, “Error correction for increasing
the usable capacity of photorefractive memories,” Opt. Lett. 19,
1483-1485 (1994).
[61] M. A. Neifeld and J. D. Hayes, “Error-correction schemes for
volume optical memories,” Appl. Opt. 34, 8183-8191 (1995).
[62] M. A. Neifeld, “Multiple-error-correcting codes for improving the
performance of optical matrix–vector processors,” Opt. Lett. 20,
758-760 (1995).
[63] E. Hwang et al., “Three-dimensional error correction schemes for
holographic data storage,” Jpn. J. Appl. Phy. 44, 3529–3533
(2005).
[64] H. Pishro-Nik et al., “Low-density parity-check codes for volume
holographic memory systems,” Appl. Opt. 42, 861-870 (2003).
[65] H. Hayashi and K. Kimura, “Low-density parity-check coding for
holographic data storage,” Jpn J. Appl. Phy. 44, 3495–3498 (2005).
[66] L. D. Ramamoorthy and B. V. K. V. Kumar, “Two-dimensional
equalization and error correction using low density parity check
codes for holographic data storage,” Jpn. J. Appl. Phy. 45,
1305-1310 (2006).
[67] H. Pishro-Nik, F. Fekri, “Irregular repeat-accumulate codes for
volume holographic memory systems,” Appl. Opt. 43, 5222-5227
(2004).
[68] M. Blaum, J. Bruck and A. Vardy, “Interleaving schemes for
multidimensional cluster errors,” IEEE Trans. Inform. Theory 44,
730-743 (1998).
[69] T. Etzion and A. Vardy, “Two-dimensional interleaving schemes
with repetitions: Constructions and bounds,” IEEE Trans. Inform.
Theory 48, 428-457 (2002).
[70] A. Vardy et al., “Conservative arrays: Multidimensional
modulation codes for holographic recording,” IEEE Trans. Inform.
Theory 42, 227-230 (1996).
[71] T. Kume et al., “Digital holographic memory using twodimensional
modulation code,” Jpn. J. Appl. Phys. 40, 1732-1736
(2001).
[72] T. Kume et al., “Modulation coding for digital holographic
memory using strontium barium niobate,” Jpn. J. Appl. Phys. 40,
2296-2300 (2001).
[73] E. Hwang et al., “A new efficient error correctible modulation code
for holographic data storage,” Jpn. J. Appl. Phys. 41, 1763-1766
(2002).
[74] R. John, J. Joseph and K. Singh, “An input-data page modulation
scheme for content-addressable holographic digital data
storage,” Opt. Commun. 249, 387-395 (2005).
[75] R. John, J. Joseph and K. Singh, “A new balanced modulation code
for a phase-image-based holographic data storage system,” J. Opt.
A-Pure and Appl. Opt. 7, 391-395 (2005).
[76] B. M. King and M. A. Neifeld, “Sparse modulation coding for
increased capacity in volume holographic storage,” Appl. Opt. 39,
6681-6688 (2000).
[77] A. Suto and E. Lorincz, “Optimisation of data density in Fourier
holographic system using spatial filtering and sparse modulation
coding,” Optik 115, 541-546 (2004).
[78] J. Q. Trelewicz, “Architecture for trellis-coded modulation in page
memories,” Electron. Lett. 36, 144-145 (2000).
[79] D. E. Pansatiankul and A. A. Sawchuk, “Variable-length
two-dimensional modulation coding for imaging page-oriented
optical data storage systems,” Appl. Opt. 42, 5319-5333 (2003).
[80] E. Hwang et al., “A new two-dimensional pseudo-random
modulation code for holographic data storage,” Jpn. J. Appl. Phys.
42, 1010-1013 (2003).
[81] D. E. Pansatiankul and A. A. Sawchuk, “Fixed-length
two-dimensional modulation coding for imaging page-oriented
optical data storage systems,” Appl. Opt. 42, 275-290 (2003).
[82] J. Lee and J. Lee, “DC-free coding of run-length-limited codes for
multi-level optical recording systems,” Jpn. J. Appl. Phys. 45,
1097-1100 (2006).
[83] J. J. Ashley and B. H. Marcus, “Two-dimensional low-pass
filtering codes,” IEEE Trans. Commun. 46, 724-727 (1998).
[84] B. P. Bernal et al., “Balancing inter-pixel crosstalk and detector
noise to optimize areal density in holographic storage systems,”
Appl. Opt. 37, 5377-5385 (1998).
[85] K. M. Chugg, X. P. Chen and M. A. Neifeld, “Two-dimensional
equalization in coherent and incoherent page-oriented optical
memory,” J. Opt. Soc. Am. A 16, 549-562 (1999).
[86] A. S. Choi and W. S. Baek, “Equalization for digital holographic
data storage,” Jpn. J. Appl. Phys. 40, 1737-1740 (2001).
[87] V. Vadde and B. V. K. V. Kumar, “Channel modeling and
estimation for intrapage equalization in pixel-matched volume
holographic data storage,” Appl. Opt. 38, 4374-4386 (1999).
[88] M. Keskinoz and B. V. K. V. Kumar, “Discrete magnitude-squared
channel modeling, equalization, and detection for volume
holographic storage channels,” Appl. Opt. 43, 1368-1378 (2004).
[89] W. X. Shang, Q. S. He and G. F. Jin, “Nonlinear blind equalization
for volume holographic data storage,” Chinese Phys. Lett. 21,
1741-1744 (2004).
[90] A. He and G. Mathew, “Nonlinear equalization for holographic
data storage systems,” Appl. Opt. 45, 2731-2741 (2006).
[91] M. Keskinoz, “Iterative soft-minimum mean-square error
equalization for digital nonlinear page-oriented memories,” Appl.
Opt. 45, 7401-7409 (2006).
[92] M. Keskinoz and B. V. K. V. Kumar, “Application of linear
minimum mean-squared-error equalization for volume holographic
data storage,” Appl. Opt. 38, 4387-4393 (1999).
[93] S. Nabavi, B. V. K. V. Kumar, “Application of linear and nonlinear
equalization methods for holographic data storage,” Jpn. J. Appl.
Phys. 45, 1079-1083 (2006).
[94] A. He and G. Mathew, “Application of nonlinear minimum mean
square error equalization for holographic data storage,” Jpn. J.
Appl. Phys. 45, 1290-1292 (2006).
[95] B. H. Olson and S. C. Esener, “Partial response precoding for
parallel-readout optical memories,” Opt. Lett. 19, 661-663 (1994).
[96] X. Chen, K. M. Chugg, and M. A. Neifeld, “Near-optimal parallel
distributed data detection for page-oriented optical memories,”
IEEE J. Selected Topics in Quantum Electronics 4, 866-879
(1998).
[97] B. M. King and M. A. Neifeld, “Parallel detection algorithm for
page-oriented optical memories,” Appl. Opt. 37, 6275-6298 (1998).
[98] G. Maire, G. Pauliat, and G. Roosen, “Homodyne detection
readout for bit-oriented holographic memories,” Opt. Lett. 31,
175-177 (2006).
[99] C. Gu, F. Dai and J. Hong, “Statistics of both optical and electrical
noise in digital volume holographic data storage,” Electron. Lett.
32, 1400-1402 (1996).
[100] C. Gu, G. Sornat and J. Hong, “Bit-error rate and statistics of
complex amplitude noise in holographic data storage,” Opt. Lett.
21, 1070-1072 (1996).
[101] G. W. Burr et al., “Noise reduction of page-oriented data storage
by inverse filtering during recording,” Opt. Lett. 23, 289-291
(1998).
[102] J. W. Goodman, Statistical optics, NJ: Wiley, New York, (1985).
[103] 林銀議,數位通訊原理−編碼與消息理論,一版,五南書局,
民國九十四年。
[104] 余兆棠、林瑞源和繆紹綱譯,無線通訊與網路,臺灣培生教育
出版,民國九十一年。
[105] S. Lin and D. J. Costello, Error Control Coding: Fundamentals
and Applications, Prentice Hall, NJ (2004).
[106] S. B. Wicker, Error control systems for digital communication and
storage, Prentice Hall, NJ (1995).
[107] C. Shannon, “A mathematical theory of communication,” Bell
System Technical Journal 27, 379-423, 626-656 (1948).
[108] H. Sasaki, Y. Fainman, S. H. Lee, “Gray-scale fidelity in volume
multiplexed photorefractive memory,” Opt. Lett. 18, 1358-1360
(1993).
[109] S. Q. Tao et al., “Quantitative study of the gray-scale fidelity of
volume holographic images,” Appl. Opt. 38, 3767-3777 (1999).
[110] G. W. Burr et al., “Gray-scale data pages for digital holographic
data storage,” Opt. Lett. 23, 1218-1220 (1998).
[111] B. M. King, G. W. Burr and M. A. Neifeld, “Experimental
demonstration of gray-scale sparse modulation codes in volume
holographic storage,” Appl. Opt. 42, 2546-2559 (2003). |