博碩士論文 93226042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.142.131.51
姓名 詹綉綾(Hsiu-Lin Chan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 新型灰階編碼於全像儲存系統之研究
相關論文
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 新型液晶電視與背光模組的探討分析
★ 高動態範圍雷射測距系統之研製★ 雙燈投影裝置運用於遠距教學之研究
★ 膠囊內視鏡之照明系統設計★ 任意頻率調變式雷射測距儀
★ 膠囊內視鏡之成像鏡頭設計★ 色域映對理論應用於顯示器色彩調校之研究
★ 多原色顯示器之色域探討與亮度優化設計★ 相位移動器校正之研究
★ 色彩調校技術與顯示器構色原理之分析★ 顯示器色彩之視覺疲勞研究
★ 干涉儀相位移動器之精密校正法★ 多主色顯示器之研製
★ 電校式電阻感測器校正方法之研究★ 利用色彩原理之新型儲存技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光學儲存為現今主流的儲存技術,其中全像光學儲存更可將儲存
容量提高至100GB,但由於全像光學儲存有過多雜訊源而限制其儲存
容量,藉由編解碼過程可降低錯碼率提昇儲存容量,本論文研究全像
儲存系統中的各種編碼方法,並提出一新型灰階編碼概念,不同於以
往的文獻,是利用其忽略不用的二維偵測器之像素深度來做編碼。新
型灰階編碼的優點為碼率R≈1,且可與其他編碼結合使用於全像儲
存系統中。
本實驗中建立一套測試錯碼率的系統,將RS 碼、平衡區塊碼和新型
灰階編碼之編解碼程式撰寫完成,並測試了兩種編碼與未編碼的圖
形,測試結果顯示,未編碼的資料錯碼率約為2.71×10−5;RS 碼和6:8
平衡區塊碼經測試得到錯誤的位元數為零,計算出錯碼率為零。
摘要(英) Optical Storage is the major of the current storage technology.
Holographic data storage can enhance the storage capacity to 100GB. But,
holographic data storage has excessively many noise to limit its storage
capacity. Coding processing can reduce the BER to a sufficiently low
level, and improve storage capacity. This thesis studies on holographic
data storage system each code method, and proposes the concept of New
gray-scale code. This method is different to the former literature, uses the
pixel depth of the two-dimensional detector to make the code. The merit
of New gray-scale code is that the code rate approaches one (R ),New
gray-scale code also can be using in holographic data storage system with
other code.
≈1
This experiment establishes testing the wrong code rate system. The
decoding programs of RS codes and Balance block codes and New
gray-scale code be written. We also test two kind of codes and not the
encoded graphs. The result showed uncode data wrong code rate
approximately is , the error bits of the RS code and Balance
block code both are zero (BER=0).
論文目次 中文摘要....................................................................................... I
英文摘要.................................... ................................................. II
誌謝............................................................................................... III
目錄............................................................................................... IV
圖目錄........................................................................................... VII
表目錄........................................................................................... IX
第一章 緒論............................................................................... 1
第二章 全像儲存之原理與系統............................................... 6
2.1 基本全像儲存原理.......................................................... 6
2.1.1 全像記錄與重建...................................................... 6
2.1.2 布拉格條件.............................................................. 8
2.2 全像儲存系統.................................................................. 14
2.3 全像儲存用雷射之需求.................................................. 20
2.3.1 雷射二極體激發之固態雷射…………………….. 20
2.3.2 半導體DFB 雷射…………………………………. 21
2.4 全像儲存用材料之需求……………………………….. 24
2.4.1 光折變和光聚合物材料…………………………. 27
第三章 編碼原理……………………………………………... 29
3.1 全像儲存系統編碼之原因…………………………….. 29
3.2 錯碼率和訊雜比……………………………………….. 31
3.3 錯誤訂正碼…………………………………………….. 34
3.3.1 區塊碼………………………….. ………………... 35
3.3.2 循環碼…………………………………………….. 37
3.3.3 里德-所羅門碼…………………………………… 42
3.3.4 交錯……………………………………………….. 46
3.4 調變碼………………………………………………….. 48
3.4.1 平衡區塊編碼…………………………………… 48
3.4.2 低通編碼………………………………………… 51
3.5 等化處理和偵測……………………………………….. 52
3.5.1 等化處理………………………………………… 52
3.5.2 偵測……………………………………………… 53
第四章 新型灰階編碼之研究與各種編碼之測試…………... 55
4.1 新型灰階編碼…………………………………………. 55
4.1.1 新型灰階編碼之編解碼規則…………………… 55
4.1.2 新型灰階編碼之優缺點…………………………. 58
4.2 各種編碼之測試………………………………………. 60
第五章 結論………………………………………………….. 65
參考文獻………………………………………………………... 66
參考文獻 [1] L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data
storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[2] P. J. van Heerden, “Theory of optical information storage in
solids,” Appl. Opt. 2, 393-400 (1963).
[3] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
[4] E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).
[5] L. d’Auria, J. P. Huignard and E. Spitz, “Holographic read-write
memory and capacity enhancement by 3-D storage,” IEEE Trans.
Magn. MAG-9, 83-94 (1973).
[6] H. Coufal, D. Psaltis and G. T. Sincerbox, Eds., Holographic data
storage, Berlin, Germany: Springer-Verlag, 2000.
[7] L. K. Anderson, “Holographic optical memory for bulk data
storage,” Bell Lab. Record 45, 319-326 (1968).
[8] W. C. Stewart et al., “An experimental read-write holographic
memory,” RCA Rev. 34, 3-44 (1973).
[9] N. Nishida, M. Sakaguchi and F. Saito, “Holographic coding plate:
a new application of holographic memory,” Appl. Opt. 12,
1663-1674 (1973).
[10] W. H. Strehlow, R. L. Dennison and J. R. Packard, “Holographic
data store,” J. Opt. Soc. Am. 64, 543-544 (1974).
[11] L. d’Auria et al., “Experimental holographic read-write memory
using 3-D storage,” Appl. Opt. 13, 808-818 (1974).
[12] A. Bardos, “Wideband holographic recoder,” Appl. Opt. 13,
832-840 (1974).
[13] K. K. Sutherlin, J. P. Lauer and R. W. Olenick, “Holoscan: a
commercial holographic ROM,” Appl. Opt. 13, 1345-1354 (1974).
[14] Y. Tsunoda et al., “Holographic video disk: an alternative approach
to optical videodisks,” Appl. Opt. 15, 1398-1403 (1976).
[15] K. Kubota et al., “Holographic disk with high data transfer rate: its
application to an audio response memory,” Appl. Opt. 19, 944-951
(1980).
[16] I. Sato et al., “Holographic memory system for Kanji character
generation,” Appl. Opt. 28, 2634-2640 (1989).
[17] J. Heanue, M. Bashaw and L. Hesselink, “Volume holographic
storage and retrieval of digital data,” Science 265, 749-752 (1994).
[18] G. Zhou et al., “A holographic memory product for fingerprint
identification,” Opt. Photonics News 43, (1996).
[19] I. Michael et al., “Compact holographic storage demonstrator with
rapid access,” Appl. Opt. 35, 2375-2379 (1996).
[20] M. P. Bernal et al., “A precision tester for studies of holographic
optical storage materials and recording physics,” Appl. Opt. 35,
2360-2374 (1996).
[21] G. W. Burr et al., “Modulation coding for pixel-matched
holographic data storage,” Opt. Lett. 22, 639-641 (1997).
[22] R. M. Shelby et al., “Pixel-matched holographic data storage with
megabit pages,” Opt. Lett. 22, 1509- (1997).
[23] S. S. Orlov et al., “High-transfer-rate high-capacity holographic
disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[24] “Holographic information storage system: today and future,” IEEE
Trans. Magn. 43, 943-947 (2007).
[25] J. Ashley et al., “Holographic data storage,” IBM J. Res. Develop.
44, 341-368 (2000).
[26] E. Hecht, Optics, 4th ed., Addison Wesley, 2002.
[27] J. W. Goodman, Introduction to Fourier optics, 2nd ed.,
McGraw-Hill Book Co., Inc., 2002.
[28] R. J. Collier, C. B. Burckhardt and L. H. Lin, Optical holography,
1st ed., Academic Press, 1971.
[29] W. R. Klein, “Theoretical efficiency of Bragg devices,” Proc. IEEE
54, 803 (1966).
[30] S. Yin et al., “Wavelength-multiplexed holographic storage in a
sensitive photorefractive crystal using a visible-light tunable
diode-laser,” Opt. Commun. 101, 317-321 (1993).
[31] C. B. Burckhardt, “Use of a random phase mask for the recording
of Fourier transform holograms of data masks,” Appl. Opt. 9,
695-700 (1970).
[32] Y. Nakayama and M. Kato, “Diffuser with pseudorandom phase
sequence,” J. Opt. Soc. Am. 69, 1367-1372 (1979).
[33] J. H. McLeod, “The axicon: A new type of optical element,” J. Opt.
Soc. Am. 44, 592-597 (1954).
[34] M. P. Bernal et al., “Phase shifting element for optical information
storing systems,” AM9-97-084, U. S. Patent (1998).
[35] 林螢光,光電子學-原理、元件與應用,全華科技圖書,民國
八十八年。
[36] 施敏,半導體元件物理與製作技術,第二版,國立交通大學出
版社,民國九十一年。
[37] S. S. Orlov, “Overview of holographic recording materials for
major system architectures in holographic data storage
applications,” presented at the National Storage Industry
Consortium Int. Workshop Holographic Data Storage, Nice, France,
1999.
[38] G. Burr et al., “Experimental evaluation of user capacity in
holographic data storage system,” Appl. Opt. 37, 5431-5443
(1998).
[39] F. Ito, K. I. Kitayama and H. Oguri, “Compensation of fiber
holographic image distortion caused by intrasignal photorefractive
coupling by using a phase conjugate mirror,” Opt. Lett. 17,
215-217 (1992).
[40] M. C. Bashaw, A. Aharoni and L. Hesselink, “Alleviation of image
distortion due to striations in a photorefractive medium using a
phase-conjugated reference wave,” Opt. Lett. 17, 1149-1151
(1992).
[41] F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for
holographic memory systems,” Opt. Lett. 21, 896-899 (1996).
[42] A. Yariv et al., “Holographic fixing, readout, and storage dynamics
in photorefractive materials,” Opt. Lett. 20, 1334-1336 (1995).
[43] E. Kratzig and R. Orlowski, Appl. Phys. 67, 133 (1978).
[44] J. F. Heanue et al., “Digital holographic storage system
incorporating thermal fixing in lithium niobate,” Opt. Lett. 21,
1615-1617 (1996).
[45] H. Gunther et al., “Two-color holography in reduced nearstoichiometric
lithium niobate,” Appl. Opt. 37, 7611-7623 (1998).
[46] D. A. Waldman, H. Y. S. Li, and M. G. Horner, “Volume
shrinkage in slant fringe gratings of a cationic ring-opening volume
hologram recording material,” J. Imag. Sci. Technol. 41, 497-514
(1997).
[47] L. Dhar et al., “Holographic storage of multiple high-capacity
digital data pages in thick photopolymer systems,” Opt. Lett. 23,
1710-1722 (1998).
[48] C. Gu and F. Dai, “Cross-talk noise reduction in volume
holographic storage with extended recording reference,” Opt. Lett.
20, 2336-2338 (1995).
[49] J. F. Heanue, K. Gurkan, and L. Hesselink, “Signal detection for
page-access optical memories with intersymbol interference,” Appl.
Opt. 35, 2431–2438 (1996).
[50] M. A. Neifeld and M. McDonald, “Technique for controlling
cross-talk noise in volume holography,” Opt. Lett. 21, 1298-1300
(1996).
[51] F. Dai and C. Gu, “Effect of Gaussian references on cross-talk
noise reduction in volume holographic memory,” Opt. Lett. 22,
1802-1804 (1997).
[52] M. A. Neifeld, K. M. Chugg, and B. M. King, “Parallel data
detection in page-oriented optical memory,” Opt. Lett. 21,
1481–1483 (1996).
[53] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for
digital holographic data storage,” J. Opt. Soc. Am. A 12,
2432–2439 (1995).
[54] W. C. Chou and M. A. Neifeld, “Interleaving and error correction
in volume holographic memory systems,” Appl. Opt. 37,
6951-6968 (1998).
[55] M. Hassner, U. Schwiegelshohn and S. Winograd, “On-the-fly
error correction in data storage channels,” IEEE Trans. Magn. 31,
1149-1154 (1995).
[56] V. K. Polyanskii and P. V. Polyanskii, “Holographic associative
memories with a true brightness tone rendering,” Opt. Eng. 34,
1079-1087 (1995).
[57] J. D. Roberts et al., “Analysis of error-correction constraints in an
optical disk,” Appl. Opt. 35, 3915-3924 (1996).
[58] B. J. Goertzen and P. A. Mitkas, “Error-correcting code for volume
holographic storage of a relational database,” Opt. Lett. 20,
1655-1657 (1995).
[59] B. J. Goertzen and P. A. Mitkas, “Volume holographic storage for
large relational databases,” Opt. Eng. 35, 1847-1853 (1996).
[60] M. A. Neifeld and M. McDonald, “Error correction for increasing
the usable capacity of photorefractive memories,” Opt. Lett. 19,
1483-1485 (1994).
[61] M. A. Neifeld and J. D. Hayes, “Error-correction schemes for
volume optical memories,” Appl. Opt. 34, 8183-8191 (1995).
[62] M. A. Neifeld, “Multiple-error-correcting codes for improving the
performance of optical matrix–vector processors,” Opt. Lett. 20,
758-760 (1995).
[63] E. Hwang et al., “Three-dimensional error correction schemes for
holographic data storage,” Jpn. J. Appl. Phy. 44, 3529–3533
(2005).
[64] H. Pishro-Nik et al., “Low-density parity-check codes for volume
holographic memory systems,” Appl. Opt. 42, 861-870 (2003).
[65] H. Hayashi and K. Kimura, “Low-density parity-check coding for
holographic data storage,” Jpn J. Appl. Phy. 44, 3495–3498 (2005).
[66] L. D. Ramamoorthy and B. V. K. V. Kumar, “Two-dimensional
equalization and error correction using low density parity check
codes for holographic data storage,” Jpn. J. Appl. Phy. 45,
1305-1310 (2006).
[67] H. Pishro-Nik, F. Fekri, “Irregular repeat-accumulate codes for
volume holographic memory systems,” Appl. Opt. 43, 5222-5227
(2004).
[68] M. Blaum, J. Bruck and A. Vardy, “Interleaving schemes for
multidimensional cluster errors,” IEEE Trans. Inform. Theory 44,
730-743 (1998).
[69] T. Etzion and A. Vardy, “Two-dimensional interleaving schemes
with repetitions: Constructions and bounds,” IEEE Trans. Inform.
Theory 48, 428-457 (2002).
[70] A. Vardy et al., “Conservative arrays: Multidimensional
modulation codes for holographic recording,” IEEE Trans. Inform.
Theory 42, 227-230 (1996).
[71] T. Kume et al., “Digital holographic memory using twodimensional
modulation code,” Jpn. J. Appl. Phys. 40, 1732-1736
(2001).
[72] T. Kume et al., “Modulation coding for digital holographic
memory using strontium barium niobate,” Jpn. J. Appl. Phys. 40,
2296-2300 (2001).
[73] E. Hwang et al., “A new efficient error correctible modulation code
for holographic data storage,” Jpn. J. Appl. Phys. 41, 1763-1766
(2002).
[74] R. John, J. Joseph and K. Singh, “An input-data page modulation
scheme for content-addressable holographic digital data
storage,” Opt. Commun. 249, 387-395 (2005).
[75] R. John, J. Joseph and K. Singh, “A new balanced modulation code
for a phase-image-based holographic data storage system,” J. Opt.
A-Pure and Appl. Opt. 7, 391-395 (2005).
[76] B. M. King and M. A. Neifeld, “Sparse modulation coding for
increased capacity in volume holographic storage,” Appl. Opt. 39,
6681-6688 (2000).
[77] A. Suto and E. Lorincz, “Optimisation of data density in Fourier
holographic system using spatial filtering and sparse modulation
coding,” Optik 115, 541-546 (2004).
[78] J. Q. Trelewicz, “Architecture for trellis-coded modulation in page
memories,” Electron. Lett. 36, 144-145 (2000).
[79] D. E. Pansatiankul and A. A. Sawchuk, “Variable-length
two-dimensional modulation coding for imaging page-oriented
optical data storage systems,” Appl. Opt. 42, 5319-5333 (2003).
[80] E. Hwang et al., “A new two-dimensional pseudo-random
modulation code for holographic data storage,” Jpn. J. Appl. Phys.
42, 1010-1013 (2003).
[81] D. E. Pansatiankul and A. A. Sawchuk, “Fixed-length
two-dimensional modulation coding for imaging page-oriented
optical data storage systems,” Appl. Opt. 42, 275-290 (2003).
[82] J. Lee and J. Lee, “DC-free coding of run-length-limited codes for
multi-level optical recording systems,” Jpn. J. Appl. Phys. 45,
1097-1100 (2006).
[83] J. J. Ashley and B. H. Marcus, “Two-dimensional low-pass
filtering codes,” IEEE Trans. Commun. 46, 724-727 (1998).
[84] B. P. Bernal et al., “Balancing inter-pixel crosstalk and detector
noise to optimize areal density in holographic storage systems,”
Appl. Opt. 37, 5377-5385 (1998).
[85] K. M. Chugg, X. P. Chen and M. A. Neifeld, “Two-dimensional
equalization in coherent and incoherent page-oriented optical
memory,” J. Opt. Soc. Am. A 16, 549-562 (1999).
[86] A. S. Choi and W. S. Baek, “Equalization for digital holographic
data storage,” Jpn. J. Appl. Phys. 40, 1737-1740 (2001).
[87] V. Vadde and B. V. K. V. Kumar, “Channel modeling and
estimation for intrapage equalization in pixel-matched volume
holographic data storage,” Appl. Opt. 38, 4374-4386 (1999).
[88] M. Keskinoz and B. V. K. V. Kumar, “Discrete magnitude-squared
channel modeling, equalization, and detection for volume
holographic storage channels,” Appl. Opt. 43, 1368-1378 (2004).
[89] W. X. Shang, Q. S. He and G. F. Jin, “Nonlinear blind equalization
for volume holographic data storage,” Chinese Phys. Lett. 21,
1741-1744 (2004).
[90] A. He and G. Mathew, “Nonlinear equalization for holographic
data storage systems,” Appl. Opt. 45, 2731-2741 (2006).
[91] M. Keskinoz, “Iterative soft-minimum mean-square error
equalization for digital nonlinear page-oriented memories,” Appl.
Opt. 45, 7401-7409 (2006).
[92] M. Keskinoz and B. V. K. V. Kumar, “Application of linear
minimum mean-squared-error equalization for volume holographic
data storage,” Appl. Opt. 38, 4387-4393 (1999).
[93] S. Nabavi, B. V. K. V. Kumar, “Application of linear and nonlinear
equalization methods for holographic data storage,” Jpn. J. Appl.
Phys. 45, 1079-1083 (2006).
[94] A. He and G. Mathew, “Application of nonlinear minimum mean
square error equalization for holographic data storage,” Jpn. J.
Appl. Phys. 45, 1290-1292 (2006).
[95] B. H. Olson and S. C. Esener, “Partial response precoding for
parallel-readout optical memories,” Opt. Lett. 19, 661-663 (1994).
[96] X. Chen, K. M. Chugg, and M. A. Neifeld, “Near-optimal parallel
distributed data detection for page-oriented optical memories,”
IEEE J. Selected Topics in Quantum Electronics 4, 866-879
(1998).
[97] B. M. King and M. A. Neifeld, “Parallel detection algorithm for
page-oriented optical memories,” Appl. Opt. 37, 6275-6298 (1998).
[98] G. Maire, G. Pauliat, and G. Roosen, “Homodyne detection
readout for bit-oriented holographic memories,” Opt. Lett. 31,
175-177 (2006).
[99] C. Gu, F. Dai and J. Hong, “Statistics of both optical and electrical
noise in digital volume holographic data storage,” Electron. Lett.
32, 1400-1402 (1996).
[100] C. Gu, G. Sornat and J. Hong, “Bit-error rate and statistics of
complex amplitude noise in holographic data storage,” Opt. Lett.
21, 1070-1072 (1996).
[101] G. W. Burr et al., “Noise reduction of page-oriented data storage
by inverse filtering during recording,” Opt. Lett. 23, 289-291
(1998).
[102] J. W. Goodman, Statistical optics, NJ: Wiley, New York, (1985).
[103] 林銀議,數位通訊原理−編碼與消息理論,一版,五南書局,
民國九十四年。
[104] 余兆棠、林瑞源和繆紹綱譯,無線通訊與網路,臺灣培生教育
出版,民國九十一年。
[105] S. Lin and D. J. Costello, Error Control Coding: Fundamentals
and Applications, Prentice Hall, NJ (2004).
[106] S. B. Wicker, Error control systems for digital communication and
storage, Prentice Hall, NJ (1995).
[107] C. Shannon, “A mathematical theory of communication,” Bell
System Technical Journal 27, 379-423, 626-656 (1948).
[108] H. Sasaki, Y. Fainman, S. H. Lee, “Gray-scale fidelity in volume
multiplexed photorefractive memory,” Opt. Lett. 18, 1358-1360
(1993).
[109] S. Q. Tao et al., “Quantitative study of the gray-scale fidelity of
volume holographic images,” Appl. Opt. 38, 3767-3777 (1999).
[110] G. W. Burr et al., “Gray-scale data pages for digital holographic
data storage,” Opt. Lett. 23, 1218-1220 (1998).
[111] B. M. King, G. W. Burr and M. A. Neifeld, “Experimental
demonstration of gray-scale sparse modulation codes in volume
holographic storage,” Appl. Opt. 42, 2546-2559 (2003).
指導教授 歐陽盟(Mang Ou-Yang) 審核日期 2007-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明