博碩士論文 102233003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:44.204.204.14
姓名 吳治謙(Zhi-Qian Wu)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱
(The Rheological Properties of Invasive Cancer Cells)
相關論文
★ Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits★ 二維非彈性顆粒子之簇集現象
★ 螺旋狀高分子長鏈在拉力下之電腦模擬研究★ 顆粒體複雜流動之研究
★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究★ 帶電高分子吸附在帶電的表面上之研究
★ 自我纏繞繩節高分子之物理★ 高分子鏈在強拉伸流場下之研究
★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為★ 最佳化網路成長模型的理論研究
★ 高分子鏈在交流電場或流場下的行為★ 驟放式發火神經元的數值模擬
★ 細胞分化與腫瘤生長之理論模型★ DNA在微通道的熱泳行為
★ 對藍綠藻概日韻律之Kai蛋白震盪模型的非線性分析★ 皮膚細胞增生與腫瘤生長之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究目的在於探討不同侵犯能力的癌細胞其流變學的特性有何差異。我們以原子力顯微術量測細胞的楊氏模量。結果顯示侵犯能力越強的癌細胞,其彈性有越軟的趨勢。我們也量測了細胞的複變剪切模量,並藉此求出消耗正切。結果顯示侵犯能力越強的癌細胞,其細胞質有較偏黏彈性液體的傾向。細胞質對探針的擾動情形也有被量測。從力變化功譜及探針偏折的時間序列數據,我們得知侵犯能力較強的癌細胞其細胞質內的主動粒子的碰撞頻率比較高,而且主動粒子在運動上的協同性會較強。最後我們從探針偏折的時間序列數據求出的自相關函數的變化形式,推知侵犯性較強的癌細胞其粒子運動的弛豫時間較短。
摘要(英) The purpose of this study is to investigate the rheological properties of invasive cancer cells. We use atomic force microscopy to measure the Young’s modulus of different cell types. The result shows that the more invasive the cancer cells are, the softer they will be. We also measure the complex shear modulus, and use it to calculate the loss tangent. The result shows that if the cancer cells are more invasive, they will have the tendency to be viscoelastic liquid. The cantilever perturbation by cytoplasm is measured. From the force power spectrum and the time series data of cantilever deflection, we infer that the collision frequency of active particles is higher and the cooperativity of active motion is stronger in the more invasive cancer cells. Finally, we calculate the autocorrelation function from cantilever deflection time series data and perform the model fitting. The results show that relaxation time is shorter in the more invasive cancer cells.
關鍵字(中) ★ 原子力顯微術 關鍵字(英)
論文目次 摘要…………………………………………………………………………………………………………………………..i
Abstract…………………………………………………………………………………………………………………….ii
Contents…………………………………………………………………………………………………………………..iii
List of figures…………………………………………………………………………………………………………....v
Chapter 1. Introduction……………………………………………………………1
1.1 motivation………………………………………………………………………..1
1.2 literature review…………………………………………………………………2
1.2.1 elastic and viscoelastic measurement with AFM………………………….2
1.2.2 mechanical vibration of yeast’s cell wall……………………………………3
1.3 background………………………………………………………………………4
1.2.1 AFM principles………………………………………………………………...4
1.2.2 AFM operation modes………………………………………………………..5
1.2.3 Hertz model……………………………………………………………………7
1.2.4 complex shear modulus……………………………………………………...8
Chapter 2. Materials and methods…………………………………………….10
2.1 agar preparation……………………………………………………………….10
2.2 cell culture condition…………………………………………………………..10
2.2.1 3T3 fibroblasts…………………………………………………………….....10
2.2.2 LoVo cells…………………………………………………………………….10
2.2.3 SW620 cells………………………………………………………………….10
2.2.4 HCT116 cells………………………………………………………………...11
2.3 force measurement……………………………………………………………11
2.3.1 sensitivity calibration………………………………………………………..11
2.3.2 spring constant calibration………………………………………………....11
2.4 image scanning………………………………………………………………..12
2.5 Young′s modulus measurement……………………………………………..13
2.6 complex shear modulus measurement……………………………………...14
2.7 cantilever perturbation………………………………………………………...14
2.7.1 constant height mode……………………………………………………….14
2.7.2 signal processing…………………………………………………………....14
2.7.3 power spectrum density…………………………………………………….15
2.7.4 total power, average power, and spectral entropy……………………….15
Chapter 3. Results and discussions…………………………………………..16
3.1 elastic property of glass, Petri dish, and agar……………………………….16
3.2 viscoelastic property of 5% agar……………………………………………..19
3.3 elastic property of 3T3 fibroblast, LoVo, SW620, and HCT116…………..21
3.4 viscoelastic property of 3T3 fibroblast, LoVo, SW620, and HCT116…….25
3.5 mechanical perturbation of cytoplasm to the AFM tip……………………..27
3.5.1 force power spectrum of 1% agar, SW620, and HCT116……………….27
3.5.2 active particles activity………………………………………………………30
3.5.3 autocorrelation function fitting……………………………………………...38
Chapter 4. Conclusions and prospects………………………………………41
References………………………………………………………….....................42
參考文獻 1. Marusyk, A. and K. Polyak, Tumor heterogeneity: causes and consequences. Biochim Biophys Acta, 2010. 1805(1): p. 105-17.
2. Medema, J.P., Cancer stem cells: the challenges ahead. Nat Cell Biol, 2013. 15(4): p. 338-44.
3. Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008. 8(10): p. 755-68.
4. Pullarkat, P., P. Fernandez, and A. Ott, Rheological properties of the Eukaryotic cell cytoskeleton. Physics Reports, 2007. 449(1-3): p. 29-53.
5. de Toledo, M., et al., Cooperative anti-invasive effect of Cdc42/Rac1 activation and ROCK inhibition in SW620 colorectal cancer cells with elevated blebbing activity. PLoS One, 2012. 7(11): p. e48344.
6. Physical Sciences - Oncology Centers, N., et al., A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci Rep, 2013. 3: p. 1449.
7. Rathje, L.S., et al., Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness. Proc Natl Acad Sci U S A, 2014. 111(4): p. 1515-20.
8. Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy.
9. Smith, B.A., et al., Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys J, 2005. 88(4): p. 2994-3007.
10. Andrew E. Pelling, S.S., Edith B. Gralla, Joan S. Valentine, James K. Gimzewski, Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae. Science, 2004. 305.
11. Pelling, A.E., et al., Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomedicine, 2005. 1(2): p. 178-83.
12. Nanowizard AFM Handbook.4.3a. 2015.
13. Hutter, J.L. and J. Bechhoefer, Calibration of atomic-force microscope tips. Review of Scientific Instruments, 1993. 64(7): p. 1868.
14. JPK SPM Software 3.3a. 2009.
15. Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy. Biophysical Journal, 2004.
16. Data Processing Software Manual 4.3. 2014.
17. Sunyer, R., et al., The temperature dependence of cell mechanics measured by atomic force microscopy. Phys Biol, 2009. 6(2): p. 025009.
18. Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir, 2002.
19. Nayar, V.T., et al., Elastic and viscoelastic characterization of agar. J Mech Behav Biomed Mater, 2012. 7: p. 60-8.
20. Kuznetsova, T.G., et al., Atomic force microscopy probing of cell elasticity. Micron, 2007. 38(8): p. 824-33.
21. Jian-Qiu Wu, T.P., Counting Cytokinesis Proteins Globally and Locally in Fission Yeast. Science, 2005. 310: p. 310-314.
22. Glasgow, L.A., Transport Phenomena: An Introduction to Advanced Topics. 2010: p. 183.
23. Rother, J., et al., Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biol, 2014. 4(5): p. 140046.
指導教授 黎璧賢 審核日期 2015-11-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明