博碩士論文 102328002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.148.145.130
姓名 徐政遠(Jheng-Yuan Syu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 改質石墨烯之透明導電薄膜之研究
(The investigation of doped graphene for high performance transparent conductive film)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究★ 真空壓印於二維材料轉印製程之研究
★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討★ 氟化石墨烯複合材料塗層於多功能披覆之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於石墨烯具有優異的光、電特性且其結構具有可撓性,自其被發現出來後, 被認為是有望成為新一世代透明導電薄膜材料的候選之一。
為可達到大面積成長的需求,於本文中,將利用銅箔以化學沉積方式來合成 出高品質且單層的石墨烯。藉由化學摻雜(Doping)概念的加入,利用三氯化金 (AuCl3)溶液對石墨烯進行改質,將可達到改善電性及調變功函數之效。經由數種 儀器的分析與量測,將可了解其修飾機制與實際效果,其結果驗證了透過此方式 將可為石墨烯之特性表現帶來顯著的改善。對堆疊至三層的石墨烯而言,於此法 修飾後,將可於透光率尚保有 90.55%的情況下,片電阻值降至約 76.22 ohm/sq, 同時功函數(Work function)亦可調變至約 5.4eV; 此外,藉由堆疊石墨烯層數跟改質 濃度的優化,可以成功調變導電膜的功函數達約 0.5eV,均可歸功於金(Au)顆粒的 形成過程中使石墨烯獲得大量的載子濃度變化。而在穩定性測試下,經過 60 天的 靜置後,其片電阻將回升至約 316.78ohm/sq,與改質前相較,其尚能保有近 54% 的降幅。
此外,我們亦嘗試利用改質後的單層石墨烯與架構良好的銅(Cu)網格來形成複 合結構。於量測結果顯示,透過此二者的相結合將可得到於透光率為 85.43%時, 片電阻近 37.5ohm/sq 的複合型薄膜,其中銅網格的線寬為 10 μm。總結來說,本 研究提出的高效能透明導電膜,不但具有優異的光穿透和低的片電阻,也提供寬 幅功函數調變的範圍,達到一種所謂主動式透明導電電極的特性,且以簡易和具 量產性的方式來達成,這對於未來光電元件的應用,提供了實際且重要的貢獻。
摘要(英) Since the discovery of graphene, its outstanding performance such as the excellent optical transparency, electrical conductivity and the mechanical flexibility, making graphene as the mostly promising candidate materials for the next-generation transparent conductive electrodes.
In this study, the high quality monolayer graphene is synthesized on copper foils by chemical vapor deposition (CVD) process, a promising method for large-scale production. To improve and control its electrical conductivity and work function, the chemical doping of AuCl3as dopants and layer-by-layer stacking technique is employed. The doping mechanism and effects were characterized and measured by several analysis techniques. The results indicated that the electrical and optical performance of graphene was remarkably enhanced. The sheet resistance of 76.22 ohm/sq at 90.55% optical transmittance can be achieved by manual stacking 3-layeredand doped graphene. The work function can be turned ranging from 4.26eV (1L pristine graphene) to 5.4eV(3L doped graphene), which was attributed to the high carrier density(nearly 1021 cm-3) induced by the formation of gold (Au) particles on graphene surface. In the stability test, the sheet resistance of 3L Au doped graphene was degraded from 76.22ohm/sq to 316.78ohm/sq by standing under standard environmental condition (P = 1 atm, T = room temp.) for 60 days, still remained nearly 54% doping effect compared to the undoped samples.
Furthermore, we fabricate a hybrid thin film, which was composed of doped monolayer graphene on the pre-patterned copper (Cu) mesh with the grid width of 10 μm. The result shows that the sheet resistance of hybrid thin film can down to about 37.5 ohm/sq at85.43% transmittance. This work contributes a novel type of "active electrode": the doped graphene film yields not only a high-performance TC electrode but also provides a wide range of tunable work functions. The active electrode was prepared using a scalable and facile doping process, which paves the way for particle usage in applications such as optoelectronic devices.
關鍵字(中) ★ 石墨烯
★ 透明導電薄膜
關鍵字(英) ★ Graphene
★ Transparent conductive film
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 石墨烯簡介 1
1-1.1 成功實現理論型材料 1
1-1.2 材料之結構與特性 2
1-2 石墨烯的常見製備方式 5
1-2.1 微機械剝離 (Micromechanical exfoliation) 5
1-2.2 於碳化矽表面磊晶成長 (Epitaxial growth on SiC) 7
1-2.3 化學氣相沉積 (Chemical vapor deposition, CVD) 9
1-2.4 單/多壁奈米碳管用於製備石墨烯奈米帶(Graphene nano ribbon from uzipped SW/MWCNTs) 12
1-2.5 石墨烯氧化物的還原 (Reduction of graphene oxide) 14
1-2.6 電化學剝離 (Electrochemical exfoliation) 16
1-3 研究動機與目的 18
第二章 研究背景與文獻回顧 19
2-1 透明導電薄膜簡介 19
2-2 新型透明導電薄膜 20
2-2.1 奈米碳管導電膜 22
2-2.2 金屬奈米線導電薄膜 25
2-2.3 石墨烯導電薄膜 27
第三章 實驗方法與檢測方式 31
3-1 研究架構規劃 31
3-2 實驗流程與前置作業 32
3-2.1 基板清洗 33
3-2.2 銅箔之平坦化處理 35
3-3 製備石墨烯 36
3-4 轉印流程 39
3-5 摻雜劑選用與塗佈方式 41
3-6 銅金屬網格與複合型薄膜製作 43
3-7 檢測裝置及其原理 45
3-7.1 拉曼光譜儀(Raman spectroscopy) 45
3-7.2 四點探針量測儀(Four-point probe sheet resistivity meter) 46
3-7.3 紫外光-可見光光譜儀(UV-vis spectroscopy) 48
3-7.4 場發射掃描式電子顯微鏡(Field-effect Scanning Electron Microscope, FESEM) 48
3-7.5 霍爾效應量測儀(Hall effect analyzer) 49
3-7.6 紫外光光電子能譜儀(Ultraviolet photoelectron spectroscopy) 50
第四章 實驗結果與討論 52
4-1 石墨烯的成長與多層堆疊結果 52
4-2 改質劑選用及調配濃度最佳化 57
4-3 AuCl3 溶液對石墨烯的改質效果 63
4-3.1 修飾機制 63
4-3.2 載子注入效果 66
4-3.3 穩定性與時效性 74
4-4 銅網格與石墨烯複合薄膜 76
第五章 總結 80
參考文獻 81
參考文獻 〔1〕 K. S. Novoselov,A. K. Geim,S. V. Morozov,D. Jiang,Y. Zhang,S. V. Dubonos,I. V. Grigorieva,A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, Vol. 306, pp. 666-669, October 2004.
〔2〕 圖片。取自 http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/
〔3〕 A. K. Geim& K. S. Novoselov, “The rise of graphene”, Nature materials, Vol. 6, pp. 183-191, March 2007.
〔4〕 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, “The electronic properties of graphene”, Reviews of Modern Physics, Vol. 81, pp. 109-155, January 2009.
〔5〕 P. R. Walace, “The band theory of graphite”, Physical review, Vol. 71, Number 9, pp. 622-634, May 1947.
〔6〕 統計數據取自 Google scholar, Key word: Graphene, https://scholar.google.com.tw
〔7〕 數據取自 European Patant Office (EPO), Key word: Graphene, http://www.epo.org/
〔8〕 K. S. Novoselov and A. H. Castro Neto, “Two-dimensional crystals-based heterostructures: materials with tailored properties”, PhysicaScripta, T146, 014006, January 2012.
〔9〕 U. Starke, J. Bernhardt, J. Schardt and K. Heinz, “SiC surface reconstruction: Relevancy of atomic structure for growth technology”, Surf. Rev. Lett. 6, pp. 1129-1142, 1999.
〔10〕M. Eizenberg, J.M. Blakely, “Carbon monolayer phase condensation on Ni(111)”, Surface Science, Vol. 82, Issue 1, pp. 228–236, March 1979.
〔11〕X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff. “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”. Science, 324, pp. 1312–1314, 2009.
〔12〕P. W. Sutter, J. I. Flege, E. A. Sutter, “Epitaxial Graphene on Ruthenium” Nature Materials, Vol. 7, pp. 406-411, 2008.
〔13〕J. Coraux , A. T. N‘Diaye , C. Busse , and T. Michely, “Structural Coherency of Graphene on Ir(111)”, Nano Lett., Vol. 8, pp. 565–570, 2008.
〔14〕S. Y. Kwon, C. V. Ciobanu, V. Petrova, V. B. Shenoy, J. Bareño, V. Gambin, I. Petrov, S. Kodambaka, “Growth of Semiconducting Graphene on Palladium”, Nano Lett., Vol. 9, pp.3985–3990, 2009.
〔15〕A. Varykhalov and O. Rader, “Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence”, Phys. Rev., Vol. 80, Iss. 3, 035437, 2009.
〔16〕P. Sutter, J. T. Sadowski, and E. Sutter, “Graphene on Pt(111): Growth and substrate interaction”, Phys. Rev., Vol. 80, Iss. 24, 245411, 2009.
〔17〕A. J. Strudwick, N. E. Weber, M. G. Schwab, M. Kettner, R. T. Weitz, J. R. Wünsch, K. Müllen and Hermann Sachdev, “Chemical Vapor Deposition of High Quality Graphene Films from Carbon Dioxide Atmospheres”, ACS Nano, pp. 31–42, 2015. 〔18〕X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo and R. S. Ruoff, “Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process”, Nano Letters, 10 (11), pp. 4328–4334, 2010.
〔19〕X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. H, E M. Vogel, L. Colombo and R. S. Ruoff, ”Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper”, J. Am. Chem. Soc., 133 (9), pp. 2816–2819, 2011.
〔20〕G. Faggio, A. Capasso, G. Messina, S. Santangelo, Th. Dikonimos, S. Gagliardi, R. Giorgi, V. Morandi, L. Ortolani and N. Lisi, “High-Temperature Growth of Graphene Films on Copper Foils by Ethanol Chemical Vapor Deposition”, J. Phys. Chem., Vol. 117 (41), pp. 21569–21576, 2013.
〔21〕D.A. Boyd, W.-H. Lin, C.-C. Hsu, M.L. Teague, C.-C. Chen, Y.-Y. Lo, W.-Y. Chan, W.-B. Su, T.-C. Cheng, C.-S. Chang, C.-I. Wu & N.-C. Yeh, “Single-step deposition of high-mobility graphene at reduced temperatures”, Nature Communications, Vol.6, 6620, 2015.
〔22〕Y. S. Kim, K. Joo, S.K. Jerng, J. H. Lee, D. Moon, J. Kim, E. Yoon and S.H. Chun, “Direct Integration of Polycrystalline Graphene into Light Emitting Diodes by Plasma-Assisted Metal-Catalyst-Free Synthesis”, ACS Nano, Vol.8, No.3, pp. 2230-2236, 2014.
〔23〕K. J. Peng, C. L. Wu, Y. H. Lin, Y. J. Liu, D.P. Tsai, Y. H. Paic and G. R. Lin, “Hydrogen-free PECVD growth of few-layer graphene on an ultra-thin nickel film at the threshold dissolution temperature”, J. Mater. Chem. C, pp.3862-3870, 2013.
〔24〕D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price & J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nature, 458, pp. 872-876, 2009.
〔25〕L. Jiao, L. Zhang, X. Wang, G. Diankov& H. Dai, “Narrow graphene nanoribbons from carbon nanotubes”, Nature, 458, pp. 877-880, 2009.
〔26〕C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, Vol. 312, pp. 1191-1196, 2006.
〔27〕C. Jin, F. Lin, K. Suenaga and S. Iijima, “Fabrication of a Freestanding Boron Nitride Single Layer and Its Defect Assignments”, Phys. Rev. Lett., 102, 195505, May 2009.
〔28〕B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti & A. Kis, “Single-layer MoS2transistors”, Nature Nanotechnology, 6, pp.147–150, 2011.
〔29〕D. Pacil , J. C. Meyer, . . Girit and A. Zettl, “The two-dimensional phase of boron nitride: Few-atomic-layer sheetsand suspended membranes”, Applied Physics Letters ,92, 133107, 2008.
〔30〕L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle& D. Akinwande, “Silicene field-effect transistors operating at room temperature”, Nature Nanotechnology, 10, pp. 227–231, 2015.
〔31〕S. Bae, S. J. Kim, D. Shin, J. H. Ahn and B. H. Hong, “Towards industrial applications of graphene electrodes”, Phys. Scr., T146, 014024, 2012.
〔32〕Metal price of Indium。取 https://www.metalprices.com/pubcharts/Public/Indium_Price_Charts.asp?WeightSelect=KG&SizeSelect=M&tcs=off&changecs=1011&cid=0
〔33〕ITO’s Dominance in Touch Screens Challenged by Alternative Technologies。 November 8, 2013,取自 http://press.ihs.com/press-release/design-supply-chain-media/itos-dominance-touch-screens-challenged-alternative technolo
〔34〕L. Hu, D. S. Hecht, G. Gruner, “Carbon nanotube thin films: Fabrication, properties, and applications”, Chem. Rev., 110, pp. 5790–5844, 2010.
〔35〕J. Zhao,J. Han, J. P. Lu, “Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles”, Phys. Rev. B, 65, 193401, 2002.
〔36〕M. Shiraishi, , M. Ata, “Work function of carbon nanotubes”, Carbon, Vol. 39, Iss. 12, pp. 1913–1917, 2001.
〔37〕H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H. Windle and R. H. Friend, “Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes”, J. Phys. Chem. B, 103, pp. 8116–8121, 1999.
〔38〕S. Suzuki, C. Bower, Y. Watanabe, O. Zhou, “Work functions and valence band states of pristine and cs-intercalated single-walled carbon nanotube bundles”, Appl. Phys. Lett., 76, pp. 4007–4009, 2000.
〔39〕W. S. Su, T. C. Leung, and C. T. Chan, “Work function of single-walled and multiwalled carbon nanotubes: First-principles study”, Phys. Rev. B, Vol. 76, 235413, 2007.
〔40〕M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, “Strong, Transparent, Multifunctional, Carbon Nanotube Sheets”, Science, Vol. 309. no. 5738, pp. 1215-1219, 2005.
〔41〕D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson and C. Zhou, “Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes”, Nano Letters, Vol. 6, No.9, pp. 1880-1886, 2006. 〔42〕J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner and T. J. Marks, “Organic Light-Emitting Diodes Having Carbon Nanotube Anodes”, Nano Letters, Vol. 6, No.11, pp. 2472-2477, 2006.
〔43〕E.C.W. Ou, L. Hu, G. C. R. Raymond, O. K. Soo, J. Pan, Z. Zheng, Y. Park, D. Hecht, G. Irvin, P. Drzaic and Grüner, “Surface-Modified Nanotube Anodes for High Performance Organic Light-Emitting Diode”, ACS Nano, Vol. 3 (8), pp. 2258–2264, 2009.
〔44〕Z. Yu, L Hu, Z. Liu, M. Sun, M. Wang, G. Grüner and Qibing Pei, “Fully bendable polymer light emitting devices with carbon nanotubes as cathode and anode”, Appl. Phys. Lett. 95, 203304, 2009.
〔45〕Z. Yu, X. Niu, Z. Liu, Q. Pei, “Intrinsically Stretchable Polymer Light-Emitting Devices Using Carbon Nanotube-Polymer Composite Electrodes”, Advanced Materials, Vol. 23, Issue 34, pp. 3989–3994, 2011.
〔46〕L, Hu, H. Wu and Y. Cui, “Metal nanogrids, nanowires, andnanofibers for transparent
electrodes”, MRS BULLETIN, Vol. 36, pp. 760-765, 2011.
〔47〕H. Lu, D. Zhang, X. Ren, J. Liu and W. C. H. Choy, “Selective Growth and Integration of Silver Nanoparticles on Silver Nanowires at Room Conditions for Transparent Nano-Network Electrode”, ACS Nano, Vol. 8, No. 10, pp. 10980–10987, 2014.
〔48〕J. Y. Lee, S. T. Connor, Y. Cui and P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes”, Nano Letters, Vol. 8, No.2, pp.689-692, 2008.
〔49〕Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, “Highly flexible silver nanowireelectrodes for shape-memory polymer light-emitting diodes”, Adv. Mater., 23, pp. 664–668, 2011.
〔50〕W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, K. Leo, “Color in the corners: ITO-free white oledswith angular color stability”, Adv. Mater., 25, pp. 4006–4013, 2013
〔51〕J. Liang, L. Li, X. Niu, Z. Yu & Q. Pei, “Elastomeric polymer light-emitting devices and displays”, Nature Photonics, 7, pp. 817–824, 2013.
〔52〕H. G. Im, S. H. Jung, J. Jin, D. Lee, J. Lee, D. Lee, J. Y. Lee, I.D. Kim and B. S. Bae, “Flexible Transparent Conducting Hybrid Film Using a Surface-Embedded Copper Nanowire Network: A Highly Oxidation-Resistant Copper Nanowire Electrode for Flexible Optoelectronics”, ACS Nano, Vol. 8, pp. 10973–10979, 2014.
〔53〕Y. Cheng, S. Wang, R. Wang, J. Sun and L. Gaoa, “Copper nanowire based transparent conductive films with high stability and superior stretchability”, J. Mater. Chem. C, Vol. 2, pp. 5309-5316, 2014.
〔54〕B. Guo, L. Fang, B. Zhang, J. R. Gong, “Graphene Doping: A Review”, Insciences J., Vol. 1, pp. 80-89, 2011.
〔55〕Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, P. W. Chiu, “Graphene Annealing: How Clean Can It Be?”, Nano Lett., Vol. 12, pp. 414–419, 2012.
〔56〕J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, R. S. Ruoff, “Transfer of CVD- Grown Monolayer Graphene onto Arbitrary Substrates”, ACS Nano, Vol. 5, pp.6916–6924, 2011.
〔57〕H. Li, J. Wu, X. Huang, Z. Yin, J. Liu and H. Zhang, “A Universal, Rapid Method for Clean Transfer of Nanostructures onto Various Substrates”, ACS Nano, Vo.8, No.7, pp. 6563–6570, 2014.
〔58〕H. K. Yu, K. Balasubramanian, K. Kim, J. L. Lee, M. Maiti, C. Ropers, J. Krieg, K. Kern and A. M. Wodtke, “Chemical Vapor Deposition of Graphene on a “Peeled-Off” Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties”, ACS Nano, Vol .8, No. 8, pp. 8636–8643, 2014.
〔59〕J. Meyer, P. R. Kidambi, B. C. Bayer, C. Weijtens, A. Kuhn, A. Centeno, A. Pesquera, A. Zurutuza, J. Robertson & S. Hofmann, “Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes”, Scientific Reports, Vol. 4, 5380, 2014.
〔60〕H. Park, P. R. Brown, V. Bulovic and J. Kong, “Graphene As Transparent Conducting Electrodes in Organic Photovoltaics: Studies in Graphene Morphology, Hole Transporting Layers, and Counter Electrodes”, Nano Lett., Vol. 12, pp. 133−140, 2012.
〔61〕S. Nam, M. Song, D. H. Kim, B. Cho, H. M. Lee, J. D. Kwon, S. G. Park, K. S. Nam, Y. Jeong, S. H. Kwon, Y. C. Park, S. H. Jin, J. W. Kang, S. Jo & C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode”, Scientific Reports 4, 4788, 2014.
〔62〕S. L. Hellstrom, M. Vosgueritchian, R. M. Stoltenberg, I. Irfan, M. Hammock, Y. B. Wang, C. Jia, X. Guo, Y. Gao and Z. Bao, “Strong and Stable Doping of Carbon Nanotubes and Graphene by MoOx for Transparent Electrodes”, Nano Lett., Vol. 12, pp. 3574−3580, 2012.
〔63〕X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes”, Nano Letters, Vol. 9, No. 12, pp. 4359-4363,2009.
〔64〕X. C. Dong, D. L. Fu, W. J. Fang, Y. M. Shi, P. Chen, L. J. Li, “Doping single-layer graphene with aromatic molecules”, Small, Vol. 5, pp. 1422–1426, 2009.
〔65〕S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong &SumioIijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nature Nanotechnology, Vol. 5, pp. 574–578, 2010.
〔66〕X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton and A. F. Hebard, “High Efficiency Graphene Solar Cells by Chemical Doping”, Nano Lett., , 12, pp. 2745−2750, 2012.
〔67〕P. H. Ho, Y. T. Liou, C. H. Chuang, S. W. Lin, C. Y. Tseng, D. Y. Wang, C. C. Chen, W. Yi Hung, C. Y. Wen and C. W. Chen, “Self-Crack-Filled Graphene Films by Metallic Nanoparticles for High-Performance Graphene Heterojunction Solar Cells”, Advanced materials, Vol. 27, Iss. 10, pp. 1724–1729, 2015.
〔68〕 F. Gu ̈nes ̧ H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi and Y. H. Lee, “Layer-by-Layer Doping of Few-Layer Graphene Film”, ACS Nano, Vol. 4 No. 8, pp. 4595–4600, 2010.
〔69〕S. Chandramohan, J. H. Kang, Y. S. Katharria, N. Han, Y. S. Beak, K. B. Ko, J. B. Park, B. D. Ryu, H. K. Kim, E. K. Suh and C. H. Hong, “Chemically modified multilayer graphene with metal interlayer as an efficient current spreading electrode for InGaN/GaN blue light-emitting diodes”, J. Phys. D: Appl. Phys., Vol. 45, pp. 145101-145110, 2012.
〔70〕L. G. P. Martins, Y. Song, T. Zeng, M. S. Dresselhaus, J. Kong and P. T. Araujo, “Direct transfer of graphene onto flexible substrates”, PNAS, Vol. 110, no. 44, pp. 17762–17767, 2013.
〔71〕S. Lee, J. S. Yeo, Y. Ji, C. Cho, D. Y. Kim, S. I. Na, B. H. Lee and T. Lee, “Flexible organic solar cells composed of P3HT:PCBM using chemically doped graphene electrodes”, Nanotechnology, Vol. 23, 344013, 2012.
〔72〕X. Zhang, A. Hsu, H. Wang, Y. Song, J. Kong, M. S. Dresselhaus and T. Palacios, “Impact of Chlorine Functionalization on High-Mobility Chemical Vapor Deposition Grown Graphene”, ACS Nano, Vol. 7, No. 8, pp. 7262–7270, 2013.
〔73〕J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan and E. S. Snow, “Properties of Fluorinated Graphene Films”, Nano Lett., 10 (8), pp. 3001–3005, 2010.
〔74〕K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee and J. Kong, “Enhancing the conductivity of transparent graphene films via doping”, Nanotechnology, Vol. 21, 285205, 2010.
〔75〕S. Das, P. Sudhagar, E. Ito, D. Y. Lee, S. Nagarajan, S. Y. Lee, Y. S. Kang and W. Choi, “Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells”, J. Mater. Chem., Vol. 22, pp. 20490–20497, 2012.
〔76〕S. H. Park, J. Chae, M. H. Cho, J. H. Kim, K. H. Yoo, S. W. Cho, T. G. Kimde and J. W. Kim, “High concentration of nitrogen doped into graphene using N2 plasma with an aluminum oxide buffer layer”, J. Mater. Chem. C, Vol. 2, pp. 933–939, 2014.
〔77〕L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao& H. M. Cheng, “Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum”, Nature Communications, Vol. 3, 699, 2012.
〔78〕J. H. Beck, R. A. Barton, M. P. Cox, K. Alexandrou, N. Petrone, G. Olivieri, S. Yang, J. Hone and I. Kymissis, “Clean Graphene Electrodes on Organic Thin-Film Devices via Orthogonal Fluorinated Chemistry”, Nano Lett., Vol. 15, pp. 2555−2561, 2015. 〔79〕T. B. Song and N. Li, “Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes”, Electronics, Vol. 3, pp.190-204, 2014
〔80〕M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg and J. Park, “Transfer-Free Batch Fabrication of Single Layer Graphene Transistors”, Nano Lett., Vol. 9 (12), pp. 4479–4483, 2009.
〔81〕K. L. Chavez, D. W. Hess, “A Novel Method of Etching Copper Oxide Using Acetic Acid”, J. Electrochem. Soc., 148, G640–G643, 2001.
〔82〕B. Zhang, W. H. Lee, R. Piner, I. Kholmanov, Y. Wu, H. Li, H. Ji, R. S. Ruoff, “Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper Foils”, ACS Nano, Vol. 6, pp. 2471–2476, 2012.
〔83〕Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith, A. T. C. Johnson, “Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure”, Chem. Mater., Vol. 23, pp. 1441–1447, 2011.
〔84〕Y. Song, W. Fang, A. L. Hsu and J. Kong, “Iron (III) Chloride doping of CVD graphene”, Nanotechnology, 25(39), 395701, 2014.
〔85〕J. D. Wood, G. P. Doidge, E. A Carrion, J. C. Koepke, J. A. Kaitz, I. Datye, A. Behnam, J. Hewaparakrama, B. Aruin, Y. Chen, H. Dong, R. T. Haasch, J. W. Lyding and E. Pop, “Annealing free, clean graphene transfer using alternative polymer scaffolds”, Nanotechnology, Vol. 26, No. 5, 055302, 2015.
〔86〕T. Gao, Z. Li, P. S. Huang, G. J. Shenoy, D. Parobek, S. Tan, J. K. Lee, H. Liu and P. W. Leu, “Hierarchical Graphene/Metal Grid Structures for Stable, Flexible Transparent Conductors”, ACS Nano, 9 (5), pp. 5440–5446, 2015.
〔87〕A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects",Solid State, Communications, vol. 143, pp. 47-57, 2007. 〔88〕施敏、李明逵著,半導體元件物理與製作技術,曾俊元譯,第三版,國立交通大學出版社,新竹市,民國 102 年。
〔89〕K. W. Kolasinski, Surface science: Foundations of Catalysis and Nanoscience, John Wiley & Sons, Ltd, New York, 2008.
〔90〕S. Tongay, K. Berke, M. Lemaitre, Z. Nasrollahi, D. B. Tanner, A. F. Hebard and B. R. Appleton, “Stable hole doping of graphene for low electrical resistance and high optical transparency”, Nanotechnology, Vol. 22, No. 42, 425701, 2011.
〔91〕Y. Liu, E. Jung, Y. Wang, Y. Zheng, E. J. Park, S. M. Cho and K. P. Loh, “”Quasi-freestanding” Graphene-on-Single Walled Carbon Nanotube Electrode for Applications in Organic Light-emitting Diode”, Small, 10(5), pp. 944-949, 2014.
〔92〕I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, R. Piner, G. Shvets and R. S. Ruoff, “Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires”, Nano Lett., 12, pp. 5679−5683, 2012.
〔93〕M. Sun. Lee, K. Lee, S. Y. Kim, H. Lee, J. Park, K. H. Choi, H. K. Kim, D. G. Kim, D. Y. Lee, S. W. Nam and J. U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene−Metal Nanowire Hybrid Structures”, Nano Lett., 13, pp. 2814−2821, 2013.
〔94〕S. M. Kim, K. K. Kim, Y. W. Jo, M. H. Park, S. J. Chae, D. L. Duong, C. W. Yang, J. Kong and Y. H. Lee, “Role of Anions in the AuCl3-Doping of Carbon Nanotubes”, ACS Nano, Vol. 5, No. 2, pp. 1236–1242, 2011.
〔95〕B. C. Brodie, “On the Atomic Weight of Graphite”, Phil. Trans. R. Soc. Lond., 1859 149, pp. 249-259,1859.
〔96〕W. S.Hummers Jr., & R. E.Offeman, “Preparation of graphitic oxide”,J. Am. Chem.Soc., 80, p.1339, 1958.
〔97〕V. C. Tung, M. J. Allen, Y. Yang & R. B. Kaner, “High-throughput solution processing of large-scale graphene”, Nature Nanotechnology, 4, pp. 25-29, 2009.
〔98〕Y. Si and E. T. Samulski, “Synthesis of Water Soluble Graphene”, Nano Lett., 8 (6), pp. 1679-1682, 2008.
〔99〕M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. H. Alonso, D. L. Milius, R. Car, R. K. Prud’homme and I. A. Aksay, “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite”, Chem. Mater., 19, pp. 4396-4404, 2007.
〔100〕 H. He, J. Klinowski, M. Forster, A Lerf, “A new structural model for graphite oxide”, Chemical Physics Letters, 287,pp. 53-56, 1998.
〔101〕 F. Bonaccorso and Z. Sun, “Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics”, Optical Materials Express, Vol. 4, Issue 1, pp. 63-78, 2014.
〔102〕 M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg and J. N. Coleman, “Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions”, J. Am. Chem. Soc., 131 (10), pp. 3611-3620, 2009.
〔103〕 S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes”, Nature Nanotechnology, 4, pp. 217-224, 2009.
〔104〕 N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang and J. Chen, “One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite”, Advanced Functional Materials, Vol. 18, Iss. 10, pp. 1518-1525, 2008.
〔105〕 T. Kuila, P. Khanra, N. H. Kim, S. K. Choi, H. J. Yun and J. H. Lee, “One-step electrochemical synthesis of 6-amino-4-hydroxy-2-napthalene-sulfonic acid functionalized graphene for green energy storage electrode materials”, Nanotechnology, Vol. 24, No. 36, 356706, 2013.
〔106〕 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi & B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, 457, pp. 706-710, 2009.
〔107〕 林永昌等,「石墨烯之電子能帶特性與其元件應用」,物理雙月刊,33 卷 2 期, 191~202 頁,2011。
〔108〕 M. Boutchich, H. Arezki, D. Alamarguy, K.-I. Ho, H. Sediri, F. Güneş, J. Alvarez, J. P. Kleider, C. S. Lai, and A. Ouerghi, “Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate”, Applied Physics Letters, 105, 233111, 2014.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2015-12-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明