以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:75 、訪客IP:18.224.54.61
姓名 曾郁崙(Yu-lon Zeng) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 操作在零直流偏壓和次兆赫波頻段下並具有集極漸變帶溝的高性能銻砷化鎵/磷化銦單載子光偵測器
(High-Performance GaAs0.5Sb0.5/InP UTC-PD with Graded-Bandgap Collector for Zero-Bias Operation at Sub-THz Regime)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 高速高功率光偵測器在毫米波光纖和太赫茲無線通訊系統扮演重要角色,為了將元件速度推進到太赫茲頻段,必須減少空乏層厚度和主動區面積,使其縮短內部載子的傳輸時間和RC造成的頻寬限制,達成高頻目標。然而,減少元件的結構大小常會使其在高功率操作下造成嚴重的熱毀壞效應。元件最主要的發熱來源為輸入电功率,為DC反向偏壓和光電流的乘積所造成,所以讓光偵測器在零偏壓操作下還可以保持高速高功率的表現是解決熱效應的最佳方法。
單載子傳輸光偵測器能在微小的額外電場下(~10KV/cm)以快速的电子當做主要傳輸載子,此結構設計可有效幫助元件在零偏壓下,還可達到上述所提到的目標。單載子光偵測器已被證實在1.2mA下擁有卓越的3dB頻寬(>110GHz)且在100GHz和2mA下擁有良好的輸出飽合功率(-18.6dBm)。
在這次實驗中,我們證實了透過創新的磊晶結構設計可以大幅增加元件在零偏壓下的特性表現,藉由使用type II吸收層/收集層(GaAs0.5Sb0.5/InP)接面和在收集層中使用AlxInyGa1-x-yAs漸變能帶,即可使電流阻斷效應降低。最好的高速表現(2mA下3db頻寬可達到~140GHz)和160GHz操作頻率下的高輸出功率(8mA下可達到-13.9dBm)已經被成功證實。
摘要(英) High-speed and high-power photodiodes (PDs) serve as the key component in the millimeter-wave-over-fiber (MoF) or THz wireless communication system. In order to boost the speed of PD up to THz regime, downscaling the depletion layer thickness and device active area is an essential way to minimize both the internal carrier transient time and RC-limited bandwidth. However, the miniaturized size of device usually results in serious device-heating and thermal failure under high-power operation. The primary source of self-heating is the input electrical power, which equals to the product of dc reverse bias of PD and its output photocurrent. To have the PD sustain high-speed and high-power performance even under zero-bias operation should thus be one of effective solutions to minimize this thermal issue.
Uni-traveling carrier photodiodes (UTC-PDs), which have only fast electron as active carriers under small external applied electric field (~ 10 kV/cm), is one of attractive choices to meet the above-mentioned application under zero-bias operation. Such device structure has demonstrated an excellent 3-dB O-E bandwidth (>110 GHz) under 1.2 mA output photocurrent with a moderate saturation output power (-18.6 dBm at 2mA) at 100 GHz.
In this work, we demonstrate a novel design of UTC-PD, which can further enhance its zero-bias performance. By using type-II (GaAs0.5Sb0.5/InP) absorption/collector interface and AlxInyGa1-x-yAs graded bandgap structure in the collector layer, the current blocking (Kirk) effect can be minimized. State-of-the-art high-speed performance (~140 GHz 3-dB O-E bandwidth at 2mA output photocurrent) and output power (-13.9 dBm at 8 mA) at sub-THz regime (160 GHz) under zero-bias operation has been successfully demonstrated.關鍵字(中) ★ 零偏壓單載子光偵測器 關鍵字(英) ★ zero bias UTC-PD 論文目次 摘要 I
AbstractII
目錄 III
圖目錄 IV
表目錄 V
第一章 緒論 1
1.1 動通訊之發展歷史 1
1.2 Rof系統技術 2
1.3光偵測器發展目標 4
1.4零偏壓光偵測器發展歷史 8
1.5零偏壓光偵測器其它應用 11
1.6論文動機與架構 17
第二章 彈道傳輸單載子光偵測器設計 19
2.1 傳統P-I-N光偵測器工作原理 19
2.2 單載子傳輸光偵測器工作原理 20
2.3第三代零偏壓光偵測器之結構設計 22
第三章 超高速(~300GHz)近彈道單載子光二極體(NBUTC-PD)製程步驟與底座製程步驟 25
3.1 超高速(~300GHz)近彈道單載子光二極體(NBUTC-PD)製程 30
3.2 CPW底座電路製程 43
3.3 元件與傳輸線基板結合(Flip-Chip Bond) 48
第四章 彈道傳輸單載子光偵測器之量測與結果討論 50
4.1 Heterodyne-Beating 量測系統之架設 50
4.2 頻寬量測結果 51
4.3 高功率產生量測結果 54
第五章 結論與未來研究方向 55
參考文獻 56
圖目錄
圖1-1 5G各個優點概括圖[2] 1
圖1-2 RoF應用概念圖 3
圖1-3 簡化RAU後的Rof系統 4
圖1-4 中心站、基站系統結構圖 4
圖1-5 (a) Quinstar功率放大器產品圖(b)功率放大圖 5
圖1-6 覆晶接合示意圖 7
圖1-7 Cascade-twin UTC光偵測器結構圖[9] 8
圖1-8 CT-UTC-PD俯視圖[9] 9
圖1-9 CT-UTC-PD頻率響應圖[9] 9
圖1-10 0v,-1v,10Gbit/s, 20Gbit/s, 30Gbit/s,40uGbit/s量測眼圖[10]…………………………………………………………………. 11
圖1-11 Coherent receiver封裝後的產品[11] 12
圖1-12 長資料速率受串音影響比例圖[12] 12
圖1-13 coherent receiver 直流偏壓電路[12] 12
圖1-14 NICT零偏壓光偵測器頻率響應圖[12] 13
圖1-15第一代光偵測器磊晶結構[13] 14
圖1-16 Type1能階差造成電流阻斷[13] 14
圖1-17第二代光偵測器磊晶結構[13] 19
圖1-18第一代與第二代光偵測器磊晶層電場模擬[13] 20
圖1-19第一代(左)與第二代(右)光偵測器頻率響應圖比較[13] 20
圖2-1傳統 P-I-N 光偵側器結構圖 20
圖2-2單載子傳輸光偵測器與傳統P-I-N光偵測器空間電荷屏蔽效應 21
圖2-3單載子傳輸光偵測器之實際操作與內部載子速度示意圖 22
圖2-4第三代UTC-PD零偏壓下電場模擬圖 23
圖2-5第三代零偏壓傳輸單載子光偵測器之磊晶結構層 24
圖3-1 (a)利用OM拍主動區曝光顯影結果(100x),(b)key過顯至白邊結果(20x), (c)沉積完金屬並先離光阻後之P金屬圖型,須注意由於P金屬上方有覆蓋Si3N4故表面顏色為淡黃色(100x),(d)為晶 片剖面示意圖。 28
圖3-2 (a)P金屬蝕刻到N層的SEM圖(b) P金屬蝕刻到N層的SEM放大圖(c)為晶片剖面示意圖。 29
圖3-3 (a)電阻特性示意圖,(b)為斷路(open)示意圖。 30
圖3-4 (a)在光學顯微鏡下觀看曝光顯影結果,(b) (c)沉積N金屬後之結果(d) 為晶片剖面示意圖。 32
圖3-5 (a)元件定義區(Isolation),(b)為晶片剖面示意圖。 34
圖3-6 第一次開洞元件俯視圖與切面圖 35
圖3-7 (a)晶片剖面圖,(b)在光學顯微鏡下看到的開洞情形 37
圖3-8開完洞後之晶片剖面圖 38
圖3-9 利用4620製作undercut技術 39
圖3-10 利用Tilt-Angle技術 40
圖3-11沉積完金屬之CPW PAD全圖 41
圖3-12沉積完PAD圖形後之晶片頗面圖 41
圖3-13 將晶片翻面利用樹酯膠黏貼在載玻片上 45
圖3-14 CPW光檢測器正反面實照圖 43
圖3-15 CPW底座示意圖 45
圖3-16 CPW金屬凸塊(Au Bump)示意圖 46
圖 3-17 AlN浸泡TMAH不同秒數後之蝕刻變化 (a)浸泡前 (b)浸泡5秒 (c)浸泡10秒 (d)浸泡15秒 47
圖3-18覆晶接合加溫之溫度條件 49
圖3-19 CPW氮化鋁基板覆晶鍵合技術(Flip-Chip Bond)完成品 49
圖4-1覆晶接合後的剖面圖 50
圖4-2 Heterodyne-Beating system 量測架設示意圖 51
圖4-3零偏壓光偵測器能帶模擬圖 53
圖4-4 2mA與5mA光電流下頻率響應圖 53
圖4-5 傳統的In0.53Ga0.47As/InP單載子光偵測器磊晶結構 55
圖4-6 傳統的In0.53Ga0.47As/InP單載子光偵測器能帶圖 55
圖4-7響應-電壓的轉換函數圖 56
圖4-8輸出功率與光電流轉換函數圖 57
圖5-1 Cascade-twin UTC光偵測器結構圖[9] 58
表目錄
表 1 1 功率放大器規格需求表 5
表 1 2 各式基板材料的熱導係數 7
表 1 3 半導體材料載子移動率 10
表 3 1 BMR SIN25/200 Recipe 28
表 3 2 HDP InP-TEST與SiN-50W Recipe 29
表 3 3 RIE-Etcher PMGI與SiN-100之Recipe 37參考文獻 [1] Qualcomm company, 2015, Envision the Future with 5G, https://www. qualcomm.com /invention/technologies/5g. Latest update 28 October 2015
[2] M. Mueck, W. Jiang, G. Sun,H .Cao, E. Dutkiewicz, and S. Choi, “Special interest group cognitive radio in 5G-white paper novel spectrum usage paradigms for 5G”, IEEE Communications Society, Nov. 2014, http:// cms.comsoc.org/SiteGen/Uploads/public/Docs_TC_CN/WhitePapers/2014_11_White_Paper_Spectrum_Paradigms_v1.0.pdf .Latest update 30 October 2015
[3] T. Chen, “ Radio Over Fiber (ROF) Applications”, Computer CD Software and Applications, China,vol.11,pp.14,2011
[4] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, and T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling carrier photodiode”, J Lightwave Teconol, vol. 23, pp. 4016–4021, Dec. 2005.
[5] J. -W. Shi, C. -Y. Wu, Y. -S. Wu, P. -H. Chiu, and C. -C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling carrier photodiode at 1.55μm wavelength”, IEEE Photon. Technol. Lett., vol. 17, pp. 1929–1931, Sep. 2005.
[6] H. Chen, A. Beling, H. Pan, and J. C. Campbell, “A method to estimate the junction temperature of photodetectors operating at high photocurrent”, IEEE J. Quant. Electron., vol. 45, pp. 1537–1541, Dec. 2009.
[7] D. A. Tulchinsky, J. B. Boos, D.Park, P. G. Goetz, W. S. Rabinovich, and K. J. Williams,” High-Current Photodetectors as Efficient, Linear, and High-Power RF Output Stages”, J. Lightw. Technol ,vol26, pp.408-416, Feb. 2008
[8] Y. -S. Wu, J. -W. Shi, and P. -H. Chiu, “Analytical modeling of a high-performance near-Ballistic uni-traveling-carrier photodiode at a 1.55μm wavelength”, IEEE Photon. Technol. Lett., vol. 18, pp. 938–940, Apr. 2006.
[9] H. Ito, T. Furuta, S. Kodama and T. Ishibashi, “Zero-bias high-speed and high-output-voltage operation of cascade-twin uni-travelling carrier photodiode”, Electron. Lett., vol. 36, 2000.
[10] L. Vivien, A. Polzer, M. M. Delphine, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fedeli, “Zero-Bias 40Gbit/s Germanium Waveguide Photodetector on Silicon”, OSA Opt. Express, vol. 20, pp. 1096-1101, 2012.
[11] I. Ogawa, T. Ohyama, H. Tanobe, R. Kasahara, S. Tsunashima, Y. Sakamaki, and H. Kawakami, ”100-Gbit/s optical receiver front-end module technology”, NTT Technol Review, Japan, 2015.
[12] T. Umezawa, K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, and T. Kawanishi, ” Zero-bias operational ultra-broadband UTC-PD above 110 GHz for high symbol rate PD-array in high-density photonic integration”, OFC 2015, Los Angeles, CA , pp.1-3,March, 2015.
[13] J. -W. Shi, C. Y Tsai, C. -S. Yang, F. -M. Kuo, Y. -M. Hsin, J. E. Bower, and C. L. Pan, “GaAsIn0.5Ga0.5InP laser power converter with undercut mesa for simultaneous high-speed data detection and DC electrical power generation”, IEEE Electron Device Lett., Vol. 33, pp. 561–563, Feb. 2012.
[14] S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Hennberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C.Koss, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate”, Nature Photonics, vol. 7, pp. 977-981, Dec., 2013.
[15] Y.-S. Wu, and J.-W. Shi, “Dynamic Analysis of High-Power and High-Speed Near-Ballistic Unitraveling Carrier Photodiodes at W-Band”,IEEE Photon.Technol. Lett., vol. 20, pp. 1160-1162, July. 2008.
[16] S. M. Sze, “Physics of Semiconductor devices”, John Wiley & Sons, 2nd Edition.
[17] H.Ito, S.Kodama, Y.Muramoto, T.Furuta, T.Nagatsuma, and T.Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes”, IEEE J. Quantum Electron., vol. 10, pp. 709–727, Jul./Aug. 2004.
[18] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaA Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz”, IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar. 1998.
[19] J. M. Wun, H. Y. Liu, Y. L. Zeng, C. B. Huang, C. L. Pan, and J. W. Shi, “High-Power THz-Wave Generation by Using Ultra-Fast (315 GHz) Uni-Traveling Carrier Photodiode with Novel Collector Design and Photonic Femtosecond Pulse Generator”, OFC 2015, Los Angeles, CA, USA ,pp.M3C.6, March, 2015指導教授 許晉瑋(Jin-wei Shi) 審核日期 2015-12-8 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare