參考文獻 |
[1] Bridge, R. Q., “Concrete filled steel tubular columns,” School of Civil Engineering, the university of Sydney, Australia, Research Report No. R283 (1976).
[2] Bulson, P. S., “The stability of flat plates,” London: Chatto and Windus (1970).
[3] Bridge, R. Q., and O’Shea, M. D., “Behavior of thin-walled steel box sections with or without internal restraint,” Journal of Constructional Steel Research, Vol. 47, pp. 73-91 (1998).
[4] Chen, S. F., Teng, J. G., and Chan, S.L., “Design of biaxially loaded short composite columns of arbitrary section,” Journal of Structural Engineering, Vol. 127, pp. 678-685 (1997).
[5] Choi, Y. H., Foutch, D. A., and LaFave, J. M., “New approach to AISC PM interaction curve for square concrete filled tube (CFT) beam-columns,” Engineering Structures, Vol. 28, pp. 1586-1598 (2006).
[6] Chung, J., Tsuda, K., and Matsui, C., “High-strength concrete filled square tube columns subjected to axial loading,” The Seventh East Asia-Pacific Conference on Structural Engineering & Construction, Kochi, Japan, Vol. 2, pp.955-960 (1999).
[7] EI-Tawil, S., and Sanz-Picon, C. F., Deierlein, G. G., “Evaluation of ACI 318 and AISC (LRFD) Strength Provisions for Composite Beam-Columns,” Journal of Constructional Steel Research, Vol. 34, pp. 103-123 (1995).
[8] El-Tawil, S., and Deierlein, G. G., “Strength and ductility of concrete encased composite columns,” Journal of Structural Engineering, Vol. 125, pp. 1009-1019 (1999).
[9] Evirgen, B., Tuncan, A., and Taskin, K., “Structural behavior of concrete filled steel tubular sections (CFT/CFSTs) under axial compression,” Thin-Walled Structures, Vol. 80, pp. 46-56 (2014).
[10] Furlong, R.W., “Strength of steel-encased concrete beam–columns,” Journal of Structural Division, pp. 113-124 (1967).
[11] Fujimoto, T., Mukai, A., Nishiyama, I., Sakino, K., “Behavior of eccentrically loaded concrete-filled steel tubular columns, ” Journal of Structural Engineering,pp. 203-212(2004).
[12] Ge, H. B., and Usami, T., “Strength of concrete-filled thin-walled steel box columns: Experiments,” Journal of Structural Engineering, Vol. 118, pp. 3036-3054 (1992).
[13] Grauers, M., “Composite columns of hollow steel sections filled with high strength concrete,” Goteborg (Sweden): Chalmers University of Technology, Ph.D. thesis (1993).
[14] Guo, L., Zhang S., Kim W.J., and Ranzi, G., “Behavior of square hollow steel tubes and steel tubes filled with concrete,” Thin-Walled Structures, Vol. 45, pp. 961-973 (2007).
[15] Hajjar, J. F., and Gourley, B. C., “Representation of concrete-filled steel tube cross section strength,” Journal of Structural Engineering, Vol. 122, pp. 1327-1336 (1996).
[16] Han, L. H., “Tests on stub columns of concrete-filled RHS sections,” Journal of Constructional Steel Research, Vol. 58, pp. 353-372 (2002).
[17] Knowles, R. B., and Park, R., “Strength of concrete-filled steel tubular columns,” Journal of Structural Division, Vol. 95, pp. 2565–2587 (1969).
[18] Lakshmi, B., and Shanmugam, N. E., “Nonlinear analysis of in-filled steel-concrete composite columns,” Journal of Constructional Steel Research, Vol. 128, pp. 922-933 (2002).
[19] Liang, Q. Q., and Uy, B., “Theoretical study on the post-local buckling of steel plates in concrete-filled box columns,” Computers and Structures, Vol. 75, pp. 479-490 (2000).
[20] Liang, Q. Q., Uy, B., and Liew, J. Y. R., “Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects,” Journal of Constructional Steel Research, Vol. 62, pp. 581-591 (2006).
[21] Liang, Q. Q., Uy, B., and Liew, J. Y. R., “Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns,” Journal of Constructional Steel Research, Vol. 63, pp. 396-405 (2007).
[22] Liang, Q. Q., “Performance-based analysis of concrete-filled steel tubular beam-columns, Part I: Theory and algorithms,” Journal of Constructional Steel Research, Vol. 65, pp. 363-372 (2009).
[23] Liang, Q. Q., “High strength circular concrete-filled steel tubular slender beam-columns, Part I: numerical analysis,” Journal of Constructional Steel Research, Vol. 67, pp. 164-171 (2011).
[24] Liang, Q. Q., Patel, V. I., and Hadi, M. N. S., “Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, Part I: Multiscale simulation,” Journal of Constructional Steel Reasearch, Vol. 75, pp.64-71 (2012).
[25] Mursi, M., and Uy, B., “Strength of concrete filled steel box columns incorporating interaction buckling,” Journal of Structural Engineering, Vol. 129, pp. 626-638 (2003).
[26] Martinez, S., Nilson, H. N., and Slate, F. O., “Spirally reinforced high-strength concrete columns,” ACI Structural Journal, Vol.81 , pp. 431-432 (1984).
[27] Matsui, C., Tsuda, K., and Ishibashi, Y., ‘‘Slender concrete filled steel tubular columns under combined compression and bending,’’ Proc., 4th Pacific Structural Steel Conference, Singapore, Pergamon, Vol. 3, pp. 29-36 (1995).
[28] Muñoz, P. R., and Hsu, C. T. T., “Behavior of biaxially loaded concrete-encased composite columns,” Journal of Structural Engineering, Vol. 123, pp. 1163-71 (1997).
[29] Patel, V. I., Liang, Q. Q., and Hadi, M. N. S., “High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part I: Modeling,” Journal of Constructional steel research, Vol. 70, pp.377-384 (2012).
[30] Schneider, S. P., “Axially loaded concrete-filled steel tubes,” Journal of Structural engineering, Vol. 124, pp. 1125-1138 (1998).
[31] Sakino, K., Nakahara H., Morino, S., and Nishiyama I.,“Behavior of centrally loaded concrete-filled steel-tube short columns,” Journal of Structural engineering, Vol. 130, pp. 180-188 (2004).
[32] Tomii, M., and Sakino, K., “Elastic–plastic behavior of concrete filled square steel tubular beam–columns,” Transactions of the Architectural Institute of Japan, Vol. 280, pp. 111-120 (1979).
[33] Tomii, M., Yoshimura, K., and Morishita, Y., “ Experimental studies on concrete filled steel tubular stub columns under concentric loading,” In: Proceedings of the international colloquium on stability of structures under static and dynamic loads, pp. 718-741 (1977).
[34] Uy, B., “Local and post-local buckling of concrete filled steel welded box columns,” Journal of Constructional Steel Research, Vol. 47, pp. 47-72 (1998).
[35] Uy, B., “Strength of concrete-filled steel box columns incorporating local buckling,” Journal of Structural Engineering, Vol. 126, pp. 341-352 (2000).
[36] Varma, A. H., “Seismic behavior, analysis, and design of high strength square concrete filled steel tube(CFT) columns,” Bethlehem (PA): Lehigh University, Ph.D. thesis (2000).
[37] Varma, A. H., Ricles, J. M., Sause, R., and Lu, L., “Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns,” Journal of Constructional Steel Research, Vol. 58, pp. 725-758 (2002).
[38] Von Karman, T., Sechler, E. E., and Donnell, L. H., “The strength of thin plates in compression,” Transactions, Vol. 54,(1932).
[39] Wright, H. D., “Local stability of filled and encased steel sections,” Journal of Structural Engineering, Vol. 121, pp. 1382-1388 (1995).
[40] Winter, G., “Strength of thin steel compression flanges,” Transactions, Vol. 112,(1947).
[41] Yu, M., Zha, X., Ye, J., and Li, Y., “A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression,” Engineering Structures, Vol. 49, pp. 1-10 (2013).
[42] Yong, Y., Nour, MG., and Nawy, EG., “Behavior of laterally confined high-strength concrete under axial loads,” Engineering Structures, Vol. 114, pp. 332-352 (1988). |