博碩士論文 101322096 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.117.154.134
姓名 黃俊豪(Jun-hao Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 以整合力法為分析工具之結構離散輕量化設計效率的探討★ 最佳化設計於結構被動控制之應用
★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究★ 構件考慮剛域之向量式有限元素分析研究
★ 橋梁多支承輸入近斷層強地動極限破壞分析★ 穩健設計於結構被動控制之應用
★ 二維結構與固體動力分析程式之視窗介面的開發★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動
★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應★ 九二一地震大里奇蹟社區倒塌原因之探討
★ 群樁基礎之最低價設計★ 應用遺傳演算法於群樁基礎低價化設計
★ 應用Discrete Lagrangian Method於群樁基礎低價化設計★ 九二一地震『台中綠色大地社區』 受損原因之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究採用非線性纖維元素法(Nonlinear fiber element method)建立考慮局部挫屈與二次彎矩效應之鋼管混凝土柱(Concrete-filled steel tube, CFT)的P-M互制曲線。多組方形CFT柱之最大軸壓強度與軸壓-單軸彎矩強度試驗數據用來驗證,纖維元素法分析結果的合理性。結果發現纖維元素法在分析CFT柱所計算的最大軸壓強度與彎矩強度,和試驗結果差異約略在合理範圍以內。另外,本研究亦藉由方形與矩形CFT柱軸壓-彎矩互制曲線進行參數研究,探討鋼管寬厚比、混凝土強度、鋼材降伏強度、偏心角、有效長度、初始幾何缺陷和偏心距等參數,對CFT柱軸壓-彎矩強度互制曲線的影響。
摘要(英) This study presents nonlinear fiber element method determine the axial load-biaxial bending moment interaction curves of concrete filled steel tubular beam-columns (CFT) with local buckling and second-order effect. Many experimental ultimate loads and axial load-uniaxial bending moment stengths of square CFST slender beam-columns tested by independent researchers are used to verify the rationality of the fiber element method analysis. The predicted results of fiber element analysis method show good agreement with the uniaxial bending and ultimate load tests. In the study, an extensive parametric study was performed to investigate the influences of width-to-thickness ratio, concrete compressive strengths, steel yield strengths, load angle, columns slenderness, initial geometric imperfect, loading eccentricity on the axial load-biaxial bending moment interaction curve of concrete-filled steel tubular beam-column.
關鍵字(中) ★ 鋼管混凝土柱
★ 軸壓-彎矩互制曲線
★ 纖維元素法
★ 二次彎矩效應
★ 局部挫屈
關鍵字(英) ★ Concrete-filled steel tubular beam-column
★ Axial load -biaxial bending moment interaction curve
★ Fiber element method
★ Second-order effect
★ Local buckling
論文目次 摘要 I
Abstract II
目錄 III
表目錄 VII
圖目錄 XIV
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 研究內容 9
第二章 以纖維元素法建立考慮局部挫屈之矩形CFT梁柱構件的互制曲線
10
2.1 纖維元素法之基本假設 10
2.2 建立纖維元素法之應變應力與斷面軸力和兩向彎矩 10
2.2.1 斷面離散 10
2.2.2 纖維元素應變計算 11
2.2.3 纖維元素應力計算 12
2.2.4 斷面軸力與兩向彎矩計算 14
2.3 鋼管局部挫屈與局部挫屈後之行為回顧 15
2.4 纖維元素法中模擬局部挫屈與局部挫屈後行為之方法 17
2.4.1 引言 17
2.4.2 臨界局部挫屈應力公式 18
2.4.3 有效寬度公式 21
2.4.4 應力調整 22
2.4.5 局部挫屈之模擬步驟 26
2.5 考慮局部挫屈之梁柱最大軸壓強度Pmax 27
2.6 纖維元素法之軸壓-雙軸彎矩互制圖形的建立 29
2.7 纖維元素個數訂定 31
第三章 考慮局部挫屈之計算強度與試驗強度比較和P-M曲線參數研究 46
3.1 引言 46
3.2 纖維元素法計算強度與試驗強度比較 46
3.2.1 計算最大軸壓強度與試驗最大軸壓強度比較 46
3.2.2 計算純彎矩強度與試驗純彎矩強度比較 47
3.2.3 計算軸壓-單軸彎矩強度與試驗軸壓-單軸彎矩強度比較 48
3.3 考慮與不考慮局部挫屈之軸壓-彎矩互制曲線比較 54
3.3.1 受軸壓-單軸彎矩作用 54
3.3.2 受軸壓-雙軸彎矩作用 54
3.4 方形與矩形CFT柱軸壓-彎矩互制曲線參數研究 55
3.4.1 鋼管斷面寬厚比對軸壓-彎矩互制曲線的影響 55
3.4.2 混凝土強度對軸壓-彎矩互制曲線的影響 58
3.4.3 鋼材降伏強度對軸壓-彎矩互制曲線的影響 61
3.4.4 偏心角對軸壓-彎矩互制曲線的影響 63
第四章 以纖維元素法建立考慮局部挫屈與二次彎矩效應之矩形CFT梁柱構件的互制曲線 103
4.1 引言 103
4.2 基本假設 103
4.3 考慮初始幾何缺陷、偏心距與局部挫屈之梁柱最大軸壓強度Poa 104
4.4 纖維元素法之軸壓-雙軸彎矩互制圖形的建立 107
第五章 考慮局部挫屈與二次彎矩效應之計算強度與試驗強度比較和P-M曲線參數研究 113
5.1 引言 113
5.2 纖維元素法計算強度與試驗強度比較 113
5.2.1 計算最大軸壓強度與試驗最大軸壓強度比較 113
5.2.2 計算純彎矩強度與試驗純彎矩強度比較 115
5.2.3 計算軸壓-單軸彎矩強度與試驗軸壓-單軸彎矩強度比較 116
5.3 考慮與不考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線比較
118
5.4 方形與矩形CFT柱軸壓-彎矩互制曲線參數研究 120
5.4.1 鋼管斷面寬厚比對軸壓-彎矩互制曲線的影響 120
5.4.2 混凝土強度對軸壓-彎矩互制曲線的影響 122
5.4.3 鋼材降伏強度對軸壓-彎矩互制曲線的影響 123
5.4.4 有效長度對軸壓-彎矩互制曲線的影響 125
5.4.5 初始幾何缺陷對軸壓-彎矩互制曲線的影響 126
5.4.6 偏心距對軸壓-彎矩互制曲線的影響 128
第六章 結論與建議 159
6.1 結論 159
6.2 建議 161
參考文獻 162
參考文獻 [1] Bridge, R. Q., “Concrete filled steel tubular columns,” School of Civil Engineering, the university of Sydney, Australia, Research Report No. R283 (1976).
[2] Bulson, P. S., “The stability of flat plates,” London: Chatto and Windus (1970).
[3] Bridge, R. Q., and O’Shea, M. D., “Behavior of thin-walled steel box sections with or without internal restraint,” Journal of Constructional Steel Research, Vol. 47, pp. 73-91 (1998).
[4] Chen, S. F., Teng, J. G., and Chan, S.L., “Design of biaxially loaded short composite columns of arbitrary section,” Journal of Structural Engineering, Vol. 127, pp. 678-685 (1997).
[5] Choi, Y. H., Foutch, D. A., and LaFave, J. M., “New approach to AISC PM interaction curve for square concrete filled tube (CFT) beam-columns,” Engineering Structures, Vol. 28, pp. 1586-1598 (2006).
[6] Chung, J., Tsuda, K., and Matsui, C., “High-strength concrete filled square tube columns subjected to axial loading,” The Seventh East Asia-Pacific Conference on Structural Engineering & Construction, Kochi, Japan, Vol. 2, pp.955-960 (1999).
[7] EI-Tawil, S., and Sanz-Picon, C. F., Deierlein, G. G., “Evaluation of ACI 318 and AISC (LRFD) Strength Provisions for Composite Beam-Columns,” Journal of Constructional Steel Research, Vol. 34, pp. 103-123 (1995).
[8] El-Tawil, S., and Deierlein, G. G., “Strength and ductility of concrete encased composite columns,” Journal of Structural Engineering, Vol. 125, pp. 1009-1019 (1999).
[9] Evirgen, B., Tuncan, A., and Taskin, K., “Structural behavior of concrete filled steel tubular sections (CFT/CFSTs) under axial compression,” Thin-Walled Structures, Vol. 80, pp. 46-56 (2014).
[10] Furlong, R.W., “Strength of steel-encased concrete beam–columns,” Journal of Structural Division, pp. 113-124 (1967).
[11] Fujimoto, T., Mukai, A., Nishiyama, I., Sakino, K., “Behavior of eccentrically loaded concrete-filled steel tubular columns, ” Journal of Structural Engineering,pp. 203-212(2004).
[12] Ge, H. B., and Usami, T., “Strength of concrete-filled thin-walled steel box columns: Experiments,” Journal of Structural Engineering, Vol. 118, pp. 3036-3054 (1992).
[13] Grauers, M., “Composite columns of hollow steel sections filled with high strength concrete,” Goteborg (Sweden): Chalmers University of Technology, Ph.D. thesis (1993).
[14] Guo, L., Zhang S., Kim W.J., and Ranzi, G., “Behavior of square hollow steel tubes and steel tubes filled with concrete,” Thin-Walled Structures, Vol. 45, pp. 961-973 (2007).
[15] Hajjar, J. F., and Gourley, B. C., “Representation of concrete-filled steel tube cross section strength,” Journal of Structural Engineering, Vol. 122, pp. 1327-1336 (1996).
[16] Han, L. H., “Tests on stub columns of concrete-filled RHS sections,” Journal of Constructional Steel Research, Vol. 58, pp. 353-372 (2002).
[17] Knowles, R. B., and Park, R., “Strength of concrete-filled steel tubular columns,” Journal of Structural Division, Vol. 95, pp. 2565–2587 (1969).
[18] Lakshmi, B., and Shanmugam, N. E., “Nonlinear analysis of in-filled steel-concrete composite columns,” Journal of Constructional Steel Research, Vol. 128, pp. 922-933 (2002).
[19] Liang, Q. Q., and Uy, B., “Theoretical study on the post-local buckling of steel plates in concrete-filled box columns,” Computers and Structures, Vol. 75, pp. 479-490 (2000).
[20] Liang, Q. Q., Uy, B., and Liew, J. Y. R., “Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects,” Journal of Constructional Steel Research, Vol. 62, pp. 581-591 (2006).
[21] Liang, Q. Q., Uy, B., and Liew, J. Y. R., “Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns,” Journal of Constructional Steel Research, Vol. 63, pp. 396-405 (2007).
[22] Liang, Q. Q., “Performance-based analysis of concrete-filled steel tubular beam-columns, Part I: Theory and algorithms,” Journal of Constructional Steel Research, Vol. 65, pp. 363-372 (2009).
[23] Liang, Q. Q., “High strength circular concrete-filled steel tubular slender beam-columns, Part I: numerical analysis,” Journal of Constructional Steel Research, Vol. 67, pp. 164-171 (2011).
[24] Liang, Q. Q., Patel, V. I., and Hadi, M. N. S., “Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, Part I: Multiscale simulation,” Journal of Constructional Steel Reasearch, Vol. 75, pp.64-71 (2012).
[25] Mursi, M., and Uy, B., “Strength of concrete filled steel box columns incorporating interaction buckling,” Journal of Structural Engineering, Vol. 129, pp. 626-638 (2003).
[26] Martinez, S., Nilson, H. N., and Slate, F. O., “Spirally reinforced high-strength concrete columns,” ACI Structural Journal, Vol.81 , pp. 431-432 (1984).
[27] Matsui, C., Tsuda, K., and Ishibashi, Y., ‘‘Slender concrete filled steel tubular columns under combined compression and bending,’’ Proc., 4th Pacific Structural Steel Conference, Singapore, Pergamon, Vol. 3, pp. 29-36 (1995).
[28] Muñoz, P. R., and Hsu, C. T. T., “Behavior of biaxially loaded concrete-encased composite columns,” Journal of Structural Engineering, Vol. 123, pp. 1163-71 (1997).
[29] Patel, V. I., Liang, Q. Q., and Hadi, M. N. S., “High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part I: Modeling,” Journal of Constructional steel research, Vol. 70, pp.377-384 (2012).
[30] Schneider, S. P., “Axially loaded concrete-filled steel tubes,” Journal of Structural engineering, Vol. 124, pp. 1125-1138 (1998).
[31] Sakino, K., Nakahara H., Morino, S., and Nishiyama I.,“Behavior of centrally loaded concrete-filled steel-tube short columns,” Journal of Structural engineering, Vol. 130, pp. 180-188 (2004).
[32] Tomii, M., and Sakino, K., “Elastic–plastic behavior of concrete filled square steel tubular beam–columns,” Transactions of the Architectural Institute of Japan, Vol. 280, pp. 111-120 (1979).
[33] Tomii, M., Yoshimura, K., and Morishita, Y., “ Experimental studies on concrete filled steel tubular stub columns under concentric loading,” In: Proceedings of the international colloquium on stability of structures under static and dynamic loads, pp. 718-741 (1977).
[34] Uy, B., “Local and post-local buckling of concrete filled steel welded box columns,” Journal of Constructional Steel Research, Vol. 47, pp. 47-72 (1998).
[35] Uy, B., “Strength of concrete-filled steel box columns incorporating local buckling,” Journal of Structural Engineering, Vol. 126, pp. 341-352 (2000).
[36] Varma, A. H., “Seismic behavior, analysis, and design of high strength square concrete filled steel tube(CFT) columns,” Bethlehem (PA): Lehigh University, Ph.D. thesis (2000).
[37] Varma, A. H., Ricles, J. M., Sause, R., and Lu, L., “Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns,” Journal of Constructional Steel Research, Vol. 58, pp. 725-758 (2002).
[38] Von Karman, T., Sechler, E. E., and Donnell, L. H., “The strength of thin plates in compression,” Transactions, Vol. 54,(1932).
[39] Wright, H. D., “Local stability of filled and encased steel sections,” Journal of Structural Engineering, Vol. 121, pp. 1382-1388 (1995).
[40] Winter, G., “Strength of thin steel compression flanges,” Transactions, Vol. 112,(1947).
[41] Yu, M., Zha, X., Ye, J., and Li, Y., “A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression,” Engineering Structures, Vol. 49, pp. 1-10 (2013).
[42] Yong, Y., Nour, MG., and Nawy, EG., “Behavior of laterally confined high-strength concrete under axial loads,” Engineering Structures, Vol. 114, pp. 332-352 (1988).
指導教授 莊德興 審核日期 2016-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明