博碩士論文 101230010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.188.224.177
姓名 陳品含(PIN-HAN CHEN)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 神經膠細胞對於神經網路同步爆發之影響
(A study of the effect of glia on synchronous bursting in neuronal network)
相關論文
★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為★ 神經膠細胞在神經同步活動及鈣離子波傳遞中之角色
★ 黏菌之運動模型研究★ 離子通道電流漲落的非線性行為
★ 亞精胺影響下DNA構形與DNA碎片分佈之研究★ DNA在微通道的熱泳行為
★ 溫度及鈣動力學對離體心臟心率之影響★ 非線性控制方法來抑制離體心臟中心跳強弱交替的現象與溫度和心臟收縮的力對心律變異性的影響
★ Thermo-diffusiophoresis and their Thermodynamics★ Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis and Controlling Cardiac Alternans by Chaotic Attractors
★ Effects of periodic and sustained stretching on cardiac culture★ 在外加振盪磁場中阻尼磁針的非線性動力學分析
★ 控制單一神經元的發放時間★ 非線性調控對心臟分岔現象的影響
★ A Study of Synchronized Burst Mechanisms in Neuronal Cultures★ The Effects of Sustain Stretching and Compression in the Inter-beat Interval and Beat Rate Variability of Embryonic Cardiomyocytes
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們的大腦主要是由神經元(neuron)及神經膠細胞(glia cell)兩種細胞所構成。關於神經科學的研究已有百年的歷史,然而遺憾的是,在過去,科學家們將研究聚焦於神經元之上,而忽略了神經膠細胞在神經系統中的貢獻。近年來,有越來越多研究結果顯示,神經膠細胞在大腦中扮演著相當重要的角色。科學家發現,愛因斯坦的神經膠細胞在大腦中所佔的比例高於一般人,此外,更有研究指出,智商較高的動物,神經膠細胞在大腦中所佔的比例亦較高。這些研究結果顯示,神經膠細胞與智力的發展有著密不可分的關係。本論文主要探討,神經膠細胞的存在與否,對於整體神經網路的影響。本實驗分為三個部分:首先,利用免疫螢光染色(Immunocytochemistry)來觀察整體細胞生長趨勢及密度變化之情形。其次,則是利用多電極陣列系統(multi-electrode array system),觀察在不同天數下,樣本的發放率(firing rate)之變化及同步爆發行為之變化。最後,由於NMDA受體在記憶以及學習上扮演著相當重要的角色,因此我利用不同藥物活化NMDA受體,藉以觀察神經膠細胞的有無是否會對於整體神經網路的同步爆發行為產生不同的影響。實驗結果顯示,在具有神經膠細胞的神經網路中,神經元會有聚集成團的現象,發放率亦隨培養天數增加而增加,且更容易有同步爆發的現象產生。而NMDA受體被活化時,神經網路的發放率提升,同步爆發的形態亦有明顯變化。
摘要(英) The brain is mainly consisted of two types of cells: neurons and glia. Neuroscientists have focused on the neuron. However the contribution of the glia cell had been long ignored. Recently, several studies suggest that the glia plays many important roles in the nervous system. It had been found that the ratio of glia to neurons for the famous physicist Albert Einstein is higher than normal human. In addition, another research showed that the ratio of glia to neurons increases with species’ intelligence. This thesis focuses on the role of the glia cell in the neuronal network. First, we use the immunocytochemistry to observe the trend of the cell growth and the density change. Second, we use the multi-electrode array system to record the changes in the firing rate and the synchronous bursting with and without glia with different days in vitro (DIV). Last, we investigate the effect of the NMDA receptor on the neuronal network. In order to investigate the effect of glia on synchronous bursting in neuronal network, we used different drugs to activate the NMDA receptor. We find that in the presence of glia in the neuronal network, the neurons tend to aggregate in clusters. Furthermore, the firing rates increase with DIV, and with higher probability of the synchronous bursting. When the NMDA receptors are activated, the form of the synchronous bursting are different for culture with and without glia.
關鍵字(中) ★ 神經膠細胞
★ 同步爆發
★ 多電極陣列系統
關鍵字(英) ★ glia
★ synchronous bursting
★ multi-electrode array system
論文目次 一、    緒論………………………………………………… 1
  1.1   前言………………………………………………… 1
  1.2   神經系統…………………………………………… 3
  1.2.1  神經元和神經膠細胞……………………………… 3
  1.2.2  動作電位…………………………………………… 7
  1.2.3  NMDA受體…………………………………………… 9
  1.2.4  同步爆發…………………………………………… 11
  1.3   實驗方法…………………………………………… 13
  1.3.1  免疫細胞化學……………………………………… 13
  1.3.2  MEA系統…………………………………………… 14
  1.4   研究目的…………………………………………… 16
二、    實驗方法及步驟…………………………………… 17
  2.1   細胞培養…………………………………………… 17
  2.1.1  神經元及神經膠細胞混合培養(NGC)…………… 17
  2.1.2  抑制神經膠細胞之細胞培養(GSC)……………… 19
  2.2   免疫螢光染色……………………………………… 21
  2.3   記錄系統…………………………………………… 22
三、    實驗結果…………………………………………… 26
  3.1   簡介………………………………………………… 26
  3.2   免疫螢光染色及不同天數樣本比較……………… 27
  3.3   鎂離子測試結果…………………………………… 39
  3.4   D-serine測試結果………………………………… 44
四、    討論………………………………………………… 51
  4.1   免疫螢光染色及不同天數樣本結果之討論……… 51
  4.2   鎂離子實驗結果之討論…………………………… 51
  4.3   D-serine實驗結果之討論………………………… 52
  4.4   總結………………………………………………… 53
五、    參考文獻…………………………………………… 54
六、    附錄………………………………………………… 56
參考文獻 [1] Diamond, M. C., A. B. Scheibel, et al. (1985). "ON THE BRAIN OF A SCIENTIST - EINSTEIN,ALBERT." Experimental Neurology 88(1): 198-204.
[2] Nedergaard, M., B. Ransom, et al. (2003). "New roles for astrocytes: Redefining the functional architecture of the brain." Trends in Neurosciences 26(10): 523-530. [3] Hilgetag, C. C. and H. Barbas (2009). "Are there ten times more glia than neurons in the brain?" Brain Structure & Function 213(4-5): 365-366.
[4] Carlson, N. R. (1998). Physiology of behavior.
[5] Verkhratsky, A. and F. Kirchhoff (2007). "NMDA receptors in glia." Neuroscientist 13(1): 28-37.
[6] Halassa, M. M., T. Fellin, et al. (2007). "The tripartite synapse: roles for gliotransmission in health and disease." Trends in Molecular Medicine 13(2): 54-63.
[7] Alan Peters, S. L. P., Henry deF. Webster (1991). Fine Structure of the Nervous System: Neurons and Their Supporting Cells, Oxford University Press.
[8] Boehler, M. D., B. C. Wheeler, et al. (2007). "Added astroglia promote greater synapse density and higher activity in neuronal networks." Neuron Glia Biology 3: 127-140.
[9] Johnson, J. W. and P. Ascher (1990). "VOLTAGE-DEPENDENT BLOCK BY INTRACELLULAR MG-2+ OF N-METHYL-D-ASPARTATE-ACTIVATED CHANNELS." Biophysical Journal 57(5): 1085-1090.
[10] Nowak, L., P. Bregestovski, et al. (1984). "MAGNESIUM GATES GLUTAMATE-ACTIVATED CHANNELS IN MOUSE CENTRAL NEURONS." Nature 307(5950): 462-465.
[11] Tang, Y. P., E. Shimizu, et al. (1999). "Genetic enhancement of learning and memory in mice." Nature 401(6748): 63-69.
[12] Spira, M. E. and A. Hai (2013). "Multi-electrode array technologies for neuroscience and cardiology." Nature Nanotechnology 8(2): 83-94.
[13] Geissler, M. and A. Faissner (2012). "A new indirect co-culture set up of mouse hippocampal neurons and cortical astrocytes on microelectrode arrays." Journal of Neuroscience Methods 204(2): 262-272.
[14] Ito, D., H. Tamate, et al. (2010). "MINIMUM NEURON DENSITY FOR SYNCHRONIZED BURSTS IN A RAT CORTICAL CULTURE ON MULTI-ELECTRODE ARRAYS." Neuroscience 171(1): 50-61.
[15] Seven E. Tomek, A. L. L., Natali E. Nemirovsky and M. Foster Olive (2013). "NMDA Receptor Modulators in the Treatment of Drug Addiction." pharmaceuticals 6: 251-268.
[16] Wolosker, H., E. Dumin, et al. (2008). "D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration." Febs Journal 275(14): 3514-3526.
[17] Dzamba, D., P. Honsa, et al. (2013). "NMDA Receptors in Glial Cells: Pending Questions." Current Neuropharmacology 11(3): 250-262.
[18] Pfrieger, F. W. (2002). "Role of glia in synapse development." Current Opinion in Neurobiology 12(5): 486-490.
[19] Lopez-Bayghen, E. and A. Ortega (2011). "Glial Glutamate Transporters: New Actors in Brain Signaling." Iubmb Life 63(10): 816-823.
[20] Irwin B. Levitan, L. K. K. (2001). The Neuron: Cell and Molecular Biology.
[21] Purves, D., G. J. Augustine, et al. (2004). Neuroscience.
指導教授 陳志強(CHI-KEUNG CHAN) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明