博碩士論文 93226060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.221.112.220
姓名 黃俊育(Chun-Yun Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究
(Active multi-channel narrowband wavelength filters and mode converters in Ti:PPLN waveguides)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器
★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件
★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統
★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器
★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究
★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究
★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究★ 以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光學濾波器對處理特定頻譜的光學訊號之系統是不可或缺的元件。窄頻濾波器對光學訊號處理及光通訊系統而言尤其需要。本研究目的是在電光週期性極化反轉鈮酸鋰(EO PPLN)波導上發展出超低工作電壓主動式窄頻光學濾波器。本實驗成功的在電光週期化反轉鈮酸鋰波導上做出應用在光通訊波段的高效率索爾克波長濾波及TE ?TM模態轉換器。本元件可擁有與大部份光通訊元件更高相容性的超低操作電壓(TTL level),及簡單的電極結構。且符合國際電信聯盟(ITU)所規定的窄頻寬通條件。
在本研究中,成功地利用鈦熱擴散及電場極化反轉技術製作出低傳撥損耗的週期性極化反轉鈮酸鋰鈦波導。其傳撥損耗量測得到 。對1-cm長的元件而言,可得到頻寬為 ,且在操作電壓為 得到模態轉換或頻譜穿透率可高於 ,其電壓對應的值為1.1 V×d (μm)/L (cm)。另外溫度對頻譜範圍的調變率為 。在光通訊及光學訊號處理系統的運用上,可藉由電光週期性極化反轉鈮酸鋰鈦波導的窄頻寬通及寬光譜工作範圍的特性來發展強大且吸引人的主動式元件。
摘要(英) Optical filters are indispensable elements to many optical systems for allowing the process of optical signals in specific spectral portions. Narrowband filters are particularly demanded in optical signal processing and communication. The purpose of this research is to develop ultra-low operating-voltage and narrow-band active optical filters based on electro-optic periodically poled lithium niobate (EO PPLN) waveguides. In this work, we have successfully implemented a highly efficient Šolc-type optical wavelength filter and a TE ?TM mode converter in the c-band telecomm wavelengths based on EO Ti:PPLN waveguides. This device can have an ultra-low (TTL level) operation voltage, is highly compatible to most telecomm devices, has a simple electrode configuration, and has a narrow band-pass width conformed to the International Telecommunication Union (ITU) grid standard.
In the research, we have successfully fabricated low-loss Ti:PPLN channel waveguides using the thermally Ti-diffused method and electric-field poling technique. This device has multiple channels with each allowing for passing an ITU-grid signal in telecomm c-band wavelength. The propagation loss of the Ti:PPLN waveguides were determined to be as small as 0.17 dB/cm. A mode conversion efficiency or a spectral transmittance of as high as 97% at a bandwidth of ~2.6nm was achieved with this 1-cm device at a very low work voltage of 22 V which corresponds to a normalized value of 1.1 V×d (μm)/L(cm). Its temperature tuned wide spectral working range at a tuning rate of was also demonstrated, showing the device the potential of being an electro-optic tunable filter (EOTF). The characterized narrow band-pass width and the capability of wide spectral working range make the developed EO Ti:PPLN waveguide device a powerful and attractive active device, for example, optical communication and signal process applications.
關鍵字(中) ★ 主動式電光元件
★ 準相位匹配
★ 光學波長濾波器
★ 鈮酸鋰波導
關鍵字(英) ★ EO active device
★ quasi-phase-matching
★ optical wavelength filtr
★ LiNbO3 waveguide
論文目次 摘要.............................................................................................................i
致謝...........................................................................................................iii
目錄...........................................................................................................iv
圖目...........................................................................................................vi
表目...........................................................................................................ix
第一章 緒論........................................................................................1
1.1 積體光學簡介................................................................1
1.2 研究動機........................................................................2
1.3 內容概要........................................................................4
第二章 理論背景................................................................................5
2.1 鈮酸鋰晶體電光效應原理............................................5
2.2 TE TM模態轉換/濾波器.........................................10
2.3 電光准相位匹配元件原理..........................................11
第三章 鈦離子擴散波導模型..........................................................19
3.1 金屬熱擴散鈮酸鋰波導簡介......................................19
3.2 金屬擴散平面式波導理論..........................................20
3.3 通道式波導擴散理論..................................................22
3.4 鈦擴散波導折射率模型..............................................24
3.5 擴散深度量測..............................................................27
3.6 單模波導模擬及設計..................................................30
第四章 元件製程..............................................................................35
4.1 波導製程......................................................................36
4.2 極化反轉製程..............................................................40
第五章 實驗量測結果......................................................................45
5.1 波導特性量測..............................................................45
5.2 電光式波長濾波器之量測..........................................48
第六章 結論與未來展望..................................................................53
6.1 結論..............................................................................53
6.2 未來展望......................................................................53
參考文獻..................................................................................................55
參考文獻 [1]. S. E. Miller, “Integrated Optics : an introduction, ” Bell. Syst. Tech. J., 48, p2059-2069 (1969)
[2]. A. K. Srivastava, et. al., “1 Tb/s transmission of 100WDM 10Gb/s channels over 400km of TrueWave fiber,” OFC’98, PD10.
[3]. G. E. Town, K. Sugden, J. William, I. Bennion, and S. Poolee, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett., 7, p78 (1995).
[4]. Ishida, H. Takahashi, and Y. Inoue, “Digitally tunable optical filters using arrayed-waveguide grating (AWG) multiplexers and optical switches,” J. Lightwave Technol., 15, p321 (1997).
[5]. P. H. Lissberger , A. K. Roy and D. J. McCartney, “Narrowband position-tuned multiplayer interference filter for use in single-mode-fibre systems,” Electron. Lett., 21, p798 (1985).
[6]. M. Kuznetsov, Cascaded coupler “Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems,” J. Lightwave Technol., 12, p226 (1994).
[7]. J. Stone and L. W. Stulz, “Pigtailed high-finesse tunable fiber Fabry-Perot interferometers with large, medium and small free spectral ranges,” Electron. Lett., 23, p781 (1987).
[8]. Y. Ohman, “On some new birefringent filter for solar research,” Ark. Astron., 2, p165 (1958).
[9]. J. W. Evans, “The Šolc birefringent filter,” J. Opt. Soc. Amer., 48, p142 (1958).
[10]. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging spectrometers for fluorescent and Raman microscopy acousto-optic and liquid crystal tunable filters,” Appl. Spectro., 48, p857-866 (1994).
[11]. R. C. Alferness, “Efficient waveguide electro-optic TE TM mode converter/wavelength filter,” Appl. Phys. Lett., 36, p513-515 (1980).
[12]. R. C. Alferness and L. L. Buhl, “Electro-optic waveguide TE TM mode converter with low drive voltage,” Opt. Lett., 5, p473-475 (1980).
[13]. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett., 28, p2115-2117 (2003)
[14]. A. Yariv and P. Yeh, “Optical Waves in Crystal: propagation and control of laser radiation,” John Wiley & Sons, New York (1984).
[15]. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, “Interactions between light wave in nonlinear dielectrics, “Phys. Rev., 127, p1919 (1962)
[16]. N. A. Sanford, J. M. Connors, and W. A. Dyers, “Simplified z-propagating DC bias stable TE-TM mode converter fabricatedin y-cut Lithium Niobate,” J. Lightwave Technol., 6, p898-902 (1988)
[17]. D. Marcuse, “Optimal electrode design for integated optics modulators,” IEEE J. Quantum Electronics, 18, p393-398 (1982)
[18]. C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of Magnesium-Oxide-Induced Lithium outdiffusion waveguides,” IEEE Photon. Technol. Lett., 4, p872-875 (1992)
[19]. R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., 25, p458-460 (1974)
[20]. T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, “Water vapor effects on optical characteristics in Ti:LiNbO3 channel waveguides,” Appl. Opt., 30, p1085-1089 (1991)
[21]. J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakada, “Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion,” Appl. Phys. Lett., 27, p19-21 (1975)
[22]. J. L. Jackel, V. Ramaswamy, and S. P. Lyman, “Elimination of out-diffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, p509-511 (1981)
[23]. B. Chen and A. C. Pastor, “Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3,” Appl. Phys. Lett., 30, p570-571 (1977)
[24]. W. K. Burns, C. H. Bulmer, and E. J. West, “Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides,” Appl. Phys. Lett., 33, p70-72 (1978)
[25]. T. R. Ranganath and S. Wang, “Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides,” Appl. Phys. Lett., 30, p376-379 (1977)
[26]. S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide,” Appl. Phys. Lett., 31, p742-744 (1977)
[27]. R. J. Esdaile, “Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3,” Appl. Phys. Lett., 33, p733-734 (1978)
[28]. F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies if Ti:LiNbO3 optical waveguides,” J. Appl. Phys., 78, p5345-5350 (1995)
[29]. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol., 5, p700-708 (1987)
[30]. E. Strake, G. P. Bava, and I. Monstrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar Finite-Element Method,” J. Lightwave Technol., 6, p1126-1135 (1988)
[31]. 陳柏超,『應用於準相位匹配二次諧波產生藍光元件之質子交換波導設計與製作』,清華大學碩士論文,電機系光電組(2000)
[32]. K. S. Chiang, “Construction of refractive index profiles of planar dielectric waveguides from distribution of effective indexed,” J. Lightwave Technol., LT-3, 2, p385-391 (1985)
[33]. Y. Ishigame , T. Suhara , and H. Nishihara, “LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett., 16, p375-377 (1991)
[34]. J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a Lithium Niobate channel waveguide,” IEEE Photon Techonol. Lett., 1, p316-318 (1989)
[35]. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic-generation,” Appl. Phys. Lett., 62, p435-436 (1993)
[36]. Alan C. G. Nutt, Venkatraman Gopalan, and Mool C. Gupta, “Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett., 60, p2828-2830 (1992)
[37]. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed an cw pumping,” Appl. Phys. B, 73, p501-504 (2001)
[38]. L. H. Peng, Y. J. Shih, and Y. C. Zhang, “Restrictive domain motion in polarization switching of Lithium Niobate,” Appl. Phys. Lett., 81, p1666-1668 (2002)
[39]. M. Fujimura, T. kodama, T. Suhara, and H. Nishihara, “Quasi-phase-matched self-frequency-doubling waveguide laser in Nd:LiNbO3,” IEEE Photon Techonol. Lett., 12, p1513-1515 (2000)
[40]. M. N. Armenise, M De Sario, C. Canali, P. Franzosi, J.Singh, R. H. Hutchins, and R. M. De La Rue, “In-plane scattering in titanium-diffused LiNbO3 optical waveguides,” Appl. Phys. Lett., 45, p326-328 (1984)
[41]. M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, and G. Celotti, “TiO2, LiNb3O8, and (TixNb1-x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapors,” J. Appl. Phys., 57, p1482-1488 (1985)
[42]. M. Ahmad, K. Chelapathi, and Y. G. K. Patro, “Effect of water vapor in a y-cut lithium niobate waveguide,” Appl. Opt., 35, p1489-1491 (1996)
[43]. S. Forouhar, G. E. Betts, and W. S. C. Chang, “Effects of water vapor on modes in Ti-indiffused liNbO3 planar waveguides,” Appl. Phys. Lett., 45, p207-209 (1984)
[44]. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B, 36, p143-147 (1985)
[45]. R. C. Alferness, “Waveguide electrooptic modulator,” IEEE Trans. Microwave Theory Tech., MTT-30, p1121-1137 (1982)
[46]. F. Heismann, and R. C. Alferness, “Wavelength-tunable electrooptic polarization conversion in birefringent waveguides,” IEEE J. Quantum Electronics, QE-24, p83-93 (1988)
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2006-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明