博碩士論文 102622021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.133.156.54
姓名 蔡默西(Mosi Cai)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 臺灣中部陸海域台西盆地之二氧化碳地質封存系統評估
(An Assessment on CO2 Geosequestration Systems in the Taihsi Basin, Central Taiwan)
相關論文
★ 台灣西南部中新世井下地層之沉積環境與層序地層研究★ 台灣西南海域含天然氣水合物地層之構造架構與沈積特徵
★ 台灣西南外海之構造與地形特徵及澎湖海底峽谷演化★ 台灣海峽及台灣西部平原之沈積層速度構造
★ 台灣西南外海碰撞帶前緣的近代沉積作用與新構造運動★ 台灣中部早期前陸盆地的地層紀錄
★ 台灣西南部前陸地區演育與古應力分析★ 台灣西北部漸新世至更新世盆地演化及層序地層
★ 煤岩材料與沉積環境綜合研判★ 二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例
★ 臺灣西北部中新世-更新世沉積岩中黏土礦物和成岩作用研究★ 台灣西北部大漢溪剖面南莊層至楊梅層之沉積環境研究
★ 台灣東北外海沖繩海槽及龜山島附近之海床沉積物特徵★ 台灣西南外海高屏峽谷沉積物及沉積機制研究
★ 台灣西南海域天然氣水合物地質控制因素與資源量評估★ 台灣中部地區潛在二氧化碳封存層與蓋層之礦物組成分析及地體構造意義
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二氧化碳地質封存是將二氧化碳灌注至地下深處岩層,藉由物理和化學的機制將其封存在地層中。了解地下岩性分布,並選擇適當的二氧化碳封存層及蓋層,對二氧化碳封存至關重要。本研究利用井測資料了解臺灣中部地區台西盆地之地下地層及構造分布,評估研究區域適當的二氧化碳封存系統。
基於二氧化碳儲集層(封存層)及蓋層的厚度及深度分布,研究結果顯示臺灣中部陸海域由淺至深可分成三個封存系統,分別為:(1)晚期中新世至上新世之南莊層暨桂竹林層(儲集層)-錦水頁岩(蓋層)系統(簡稱NK-C系統)、(2)早期至中期中新世之石底層暨北寮層(儲集層)-打鹿頁岩(蓋層)系統(簡稱SP-T系統)、(3)晚期漸新世至早期中新世五指山層暨木山層(儲集層)-碧靈頁岩(蓋層)系統(簡稱WM-P系統)。
  根據前述三系統之儲集層或蓋層的岩性及深度分部,評估適當封存區域,NK-C封存系統於西部外海深度淺於800公尺、SP-T封存系統於台西外海深度淺於800公尺、SP-T和M-P封存系統於烏溪出海口北岸附近,深度大於3000公尺,前述區域不適於二氧化碳封存,其餘位置之各系統深度皆適於CO2封存。然而NK-C封存系統於彰濱工業區場址以南的錦水頁岩含有大量砂岩,不適合成為好的蓋層,無法封存大量二氧化碳。根據研究結果選定四座潛在CO2封存場址(由北而南分別為台中電廠場址、彰濱工業區場址、王功場址及麥寮電廠場址)。台中電廠場址以NK-C封存系統最利於CO2封存、彰濱工業區場址適用SP-T封存系統、麥寮電廠場址適用SP-T封存系統、王功場址適用較多系統(SP-T封存系統及WM-P封存系統),為臺灣中西部濱海區最具優勢CO2封存場址。本研究利用美國能源部評估方法,計算研究區域CO2封存量,結果顯示,NK-C封存系統總封存量大約35.4億噸,SP-T封存系統總封存量大約27.1億噸,M-P封存系統總封存量大約58.2億噸。
摘要(英) Geological storage of carbon dioxide (CO2) is to inject and store a large amount of anthropogenic CO2 in deep and sealed porous rocks in order to mitigate the aggravated threat of global warning. Borehole data are used to understand the spatial distribution of suitable CO2 reservoirs and cap rocks in the Taihsi Basin, central Taiwan, where the level of seismicity is low.
Spatial distribution of formation thickness and depth for CO2 reservoirs and cap rocks indicates three CO2 storage systems existed in the study area. They are: (1) late Miocene to Pliocene Nanchuang Formation and Kueichulin Formation (reservoirs)-Chinshui Shale (cap rocks) system (hereafter abbreviated as NK-C system), (2) early to middle Miocene Shihti Formation and Peiliao Formation (reservoirs)-Talu Shale (cap rocks) system (SP-T system), (3) late Oligocene to early Miocene Wuchishan Formation and Mushan Formation (reservoirs)-Piling Shale (cap rocks) system (WM-P system).
According to distributions of depth for reservoirs and cap rocks, we assess appropriate areas for CO2 storage. Depth of reservoirs for NK-C system in the west of the study area, and depth of reservoirs for SP-T system offshore Mai-liao power plant is shallower than 800 m which are not suitable for CO2 storage. North of the study area and close to the Wu River, reservoirs for WM-P system and SP-T system reach a depth more than 3000 m, a depth too deep for storing CO2 economically. The areas mentioned foregoing are not suitable for CO2 storage, and others are applicable. However, for NK-C system, the cap rocks (i.e. the Chinshui Shale) become sand-prone due to facies changes, leading to fail to retard great amounts of CO2 underground in the south of Chang-Bin Site. There are four sites (Taichung Power Plant Site, Chang-Bin Site, Wong-gong Site and Mai-Liao Power Plant Site from north to south) considerably suitable to retard CO2 underground. Taichung Power Plant Site is suitable for NK-C system, Chang-Bin Site is suitable for SP-T system, Mai-Liao Power Plant Site is suitable for SP-T system and Wong-gong site is most prominent which can be applied to more storage system (SP-T and WM-P system). By USDOE assessment, calculated results of storage resource for CO2 show that total storage resource is about 3.54Gt, 2.71Gt and 5.82Gt for NK-C system, SP-T system and M-P system respectively.
關鍵字(中) ★ 二氧化碳
★ 地質封存
★ 錦水頁岩
關鍵字(英) ★ Geological storage
★ carbon dioxide
★ Chinshui Shale
論文目次 摘 要 i
Abstract iii
致 謝 v
目 錄 vi
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1二氧化碳地質封存之要素及類型 1
1.2研究動機與研究目的 3
第二章 地體構造與地層 11
2.1 臺灣新生代地體構造 11
2.2 台西盆地地層 12
2.3 地層對比 16
第三章 二氧化碳封存量評估方法 23
3.1 二氧化碳基本性質 23
3.2 美國能源部二氧化碳封存量估算方法 24
3.2.1儲集層孔隙率計算 25
3.2.2二氧化碳密度計算 27
3.2.3二氧化碳封存效率計算 28
第四章 地層對比與二氧化碳封存量 40
4.1 南莊層桂竹林層-錦水頁岩系統(NK-C system) 40
4.2 石底層北寮層-打鹿頁岩系統(SP-T system) 42
4.3 五指山層木山層-碧靈頁岩系統(WM-P system) 43
第五章 台灣中部濱海區域潛在CO2封存場址 56
5.1台中電廠場址 56
5.2彰濱工業區場址 57
5.3王功場址 57
5.4麥寮電廠場址 58
第六章 討論與結論 63
參考文獻 67
參考文獻 中文部分
江紹平(2007) 台灣中部早期前陸盆地的地層紀錄。國立中央大學地球物理研究所碩士論文,共87頁。
何春蓀(1986) 台灣地質概論:台灣地質圖說明書。經濟部中央地質調查所,共169 頁。
林殿順(2010) 台灣二氧化碳地質封存潛能及安全性。經濟前瞻,第132 期,第93 至97 頁。
周瑞燉(2010) 台灣全志卷二-土地志˙地質篇。國史館台灣文獻館,共370頁。
紀文榮(1981) 雲林縣北港附近各探井口蓋蟲石灰岩、圓片蟲石灰岩及貝類石灰岩之層位。地質,第3卷,第63~71 頁。
原振維、陳堯堂、周錦德、楊耿明、陳雄茂、羅仕榮(1989) 台灣西部第三紀盆地演化與油氣潛能之綜合評估(1/2)---北部盆地與北港地區。中國石油股份有限公司七十八年度研究發展專題,共366頁。
徐兆祥(1990) 北港陸棚區南莊層分佈之探討。經濟部中央地質調查所特刊,第4號,第133-146頁。
陳文山、鄂忠信、陳勉銘、楊志成、張益生、劉聰貴、洪崇勝、謝凱旋、葉明官、吳榮章、柯炯德、林清正、黃能偉(2000) 上–更新世臺灣西部前陸盆地的演化:沉積層序與沉積物組成的研究。經濟部中央地質調查所彙刊,第13號,第137至156頁。
楊健男(2010) 二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例。國立中央大學地球物理研究所碩士論文,共88頁。

英文部分
Audet, D.M. (1995) Modelling of porosity evolution and mechanical compaction of calcareous sediments. Sedimentology, 42, 355-373.
Bachu, S. (2002) Sequestration of CO2 in geological media in response to climate change: Road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1), 87-102.
Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Christensen, N. P., Holloway, S. and Mathiassen, O.-M. (2007) Phase II Final Report from the Task Force for Review and Identification of Standards for CO2 Storage Capacity Estimation. CSLF, 42 pp. [online available at:http://www.cslforum.org/publications/documents/PhaseIIReport StorageCapacityMeasurementTaskForce.pdf]
Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S. and Zweigel, P. (2007) Best Practice for the Storage of CO2 in Saline Aquifers:Observations and Guidelines from the SACS and CO2STORE Projects. European Union, 273 pp. [online available at:http://www.co2store.org/]
Chiao, C. -H., Hwang, L. -T., Yang, M. -W., Chen, J. -L., Yu, C. -W., Ko, W. -C. and Lei, S. -C. (2012) Tai-power’s development status of CGS technology in Taiwan. Proceedings of 2012 Taiwan Symposium on Carbon Dioxide Capture, Storage and Utilization, November 25 – 27, Taipei, B 14.
Chou, C.H. and Lin, L.H. (1983) Estimation of kerogen maturity in sediments from interval velocities. Petroleum Exploration Engineering (24) (in Chinese).
Covey, M. (1984) Lithofacies analysis and basin reconstruction, Plio‐Pleistocene western Taiwan foredeep. Petroleum Geology of Taiwan, 20, 53‐83.
De Coninck, H. and Benson, S. M. (2014) Carbon dioxide capture and storage: issues and prospects. Annual Review of Environment and Resources, 39, 243-270.
DOE-NETL (U.S. Department of Energy – National Energy Technology Laboratory – Office of Fossil Energy) (2008) Carbon Sequestration Atlas of the United States and Canada, 2nd ed.. DOE-NETL, 36 pp. [online available at:http://www.netl.doe.gov/File%20Library/ Research/Coal/carbon-storage/methodology2008.pdf]
Doughty, C. (2007) Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves. Energy Conversion and Management, 48, 1768–1781.
Doughty, C., Freifeld B.M. and Trautz, R.C. (2008) Site characterization for CO2 geologic storage and vice versa: the Frio brine pilot, Texas, USA as a case study. Environmental Geology, 54(8), 1635-1656.
GCCSI (Global Carbon Capture and Storage Institute) (2014) The Global Status of CCS: 2014. GCCSI, 188 pp. [online available at:https:// www.globalccsinstitute.com/publications/global-status-ccs-2014.]
Goodman, A., Hakala, A., Bromhal, G., Deel, D., Rodosta, T., Frailey, S., Small, M., Allen,D., Romanov, V., Fazio, J., Huerta, N., McIntyre, D., Kutchko, B. and Guthrie, G. (2011) U.S. DOE methodology for development of geologic storage potential for carbon dioxide at national and regional scale. International Journal Greenhouse Gas Control, 5 (4), 952–965.
Goodman, A., Bromhal, G., Strazisar, B., Rodosta, T., Guthrie, W.F., Allen, D. and Guthrie, G. (2013) Comparison of methods for geologic storage of carbon dioxide in saline formations. International Journal Greenhouse Gas Control, 18, 329-342.
IEA GHG (International Energy Agency Greenhouse Gas R&D Programme) (2009a) Development of storage coefficients for CO2 storage in deep saline formations. IEA GHG, 61 pp. [online available at:http://www.ieaghg.org/.]
IEA GHG (International Energy Agency Greenhouse Gas R&D Programme) (2009b) CCS site characterization criteria. IEA GHG, 112 pp. [online available at:http://www.ieaghg.org/.]
Lin, A. T. and Watts, A. B. (2002) Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth (1978–2012), 107(B9), ETG-2.
Lin, A. T., Watts, A. B. and Hesselbo, S. P. (2003) Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15, 453 – 478.
Lin, C.K. (2008) Algorithm for determining optimum sequestration depth of CO2 trapped by residual gas and solubility trapping mechanisms in a deep saline formation. Geofluids, 8, 333–343.
Metz, B., Davidson, O., de Coninck, H., Loos, M. and Meyer, L. (2005) Carbon dioxide capture and storage. IPCC Special Report on Carbon Dioxide Capture and Storage, 431 pp. [online available at:https://www.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf]
Nagel, S., Castelltort, S., Wetzel, A., Willett, S. D., Mouthereau, F. and Lin, A. T. (2013) Sedimentology and foreland basin paleogeography during Taiwan arc continent collision. Journal of Asian Earth Sciences, 62, 180-204.
Poling, B.E., Prausnitz, J.M. and O’Connell, J.P. (2001) The Properties of Gases and Liquids, 5th edition. McGraw-Hill, New York, 803pp.
Sasaki, K., Fujii, T. and Nilbori, Y. (2008) Numerical simulation of supercritical CO2 injection into subsurface rock masses. Energy Conversion and Management, 49(1), 54-61.
Sung, R.-T., Li, M.-H., Dong, J.-J., Lin, A. T., Hsu, S.-K., Wang, C.-Y. and Yang, C.-N. (2014) Numerical assessment of CO2 geological sequestration in sloping and layered heterogeneous formations: A case study from Taiwan. International Journal Greenhouse Gas Contro, 20, 168-179.
Suppe, J. (1981) Mechanics of mountain building and metamorphism in Taiwan. Memoir Geological Society of China, 4, 67 – 89.
Tanaka, S., Koide, H. and Sasagawa, A. (1995) A possibility of underground CO2 storage in Japan. Energy Conversion and Management, 36(6-9), 527-530.
Teng, L. S. (1990) Geotectonic evolution of late Cenozoic arc – continent collision in Taiwan. Tectonophysics, 183, 57 – 76.
Teng, L.S. (1992) Geotectonic evolution of Tertiary continental margin basins of Taiwan. Petroleum Geology of Taiwan, 27, 1-19.
Yang, K.-M., Wu J.-C., Cheng, E.-W., Chen, Y.-R., Huang, W.-C., Tsai, C.-C., Wang, J.-B. and Ting, H.-H. (2014) Development of tectonostratigraphy in distal part of foreland basin in southwestern Taiwan. Journal of Asian Earth Sciences, 88, 98-115.
指導教授 林殿順(Andrew Tien-Shun Lin) 審核日期 2016-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明