博碩士論文 962411006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.144.117.164
姓名 林祐詩(Jack Yu-Shih Lin)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱
(Chemogenomic and Molecular Analysis of Signal Transduction Pathways in In Vivo and In Vitro Models)
相關論文
★ 發展酵素非限制性全基因體調控因子解析方法★ 大腸癌細胞株之 EGFR—K-ras 訊號路徑的基因微陣列實驗 與化學基因體學分析
★ 小鼠胚胎幹細胞株之建立及人類誘導多能性幹細胞之培養技術★ 由神經生長因子誘導之細胞內訊號路徑活化的化學基因體學分析
★ 細胞週期蛋白D1 mRNA在小鼠胚胎及成體幹細胞和腫瘤細胞中的表現及其受多能性相關因子影響之探討★ 運用時間序列微陣列資料來預測調控基因
★ 以大鼠嗜鉻性瘤細胞株建立神經訊號傳遞之細胞分子生物學模型★ 運用高通量基因微矩陣列方法解析由嗜鉻 細胞分化成神經細胞之全基因體的調控
★ 神經生長因子在神經分化中轉錄因子活性及基因調控機制之橫觀★ 以CRSBP-1接合子調控巨噬細胞的移動及吞噬
★ 探討人類子宮內膜 L-selectin ligands 在月經週期的表現
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 系統生物學方法與一般研究常規模式的差別,在於它具有能通過在不同層次上的組織而非單個分子和細胞要素之間的靜態交互運作,進而能瞭解這些分子和細胞要素在動態系統下展現出生物路徑的行為和機制的運作。在這項研究中,我建立了體內和體外模型來研究每個系統中的信號轉導路徑。在體內模型的研究中,我建立了大鼠模型,並在其新生兒後腳掌給予化學刺激後,研究神經元在非主體的週邊有害刺激下的靈敏度,評估其長大時在非主體的週邊給予同樣化學刺激後,生理和分子方面疼通的行為變化。在與受刺激腳掌同側之脊髓中的背根神經節,我們注意到強啡肽原(proDYN)基因的增加。從磷酸-ERK(pERK)活性的增加,進而瞭解到在非主體的週邊刺激發炎情況下,胞外信號調節激酶(ERK)路徑會明顯活化。這表示新生兒非主體的週邊刺激發炎可透過絲裂原活化蛋白激酶(MAPK /ERK)生物路徑中的強啡肽原進而改變疼痛處理的路徑。由於動物模型的複雜性,我們亦利用PC12細胞培養系統建立體外模型,來研究信號轉導機制。在該體外模型中,我利用分子生物學的思維方式,以及高通量的實驗和系統生物學分析,去研究在神經生長因子(NGF)的誘導下PC12細胞的神經元分化和強啡肽原基因的表現及生物路徑。我們利用京都百科全書基因和基因組路徑資料庫(KEGG),將我們的陣列實驗數據與該資料庫中的基因資料庫及生物路徑資料庫數據進行比對。交叉比對後產生了830個表現有改變的基因,其中395基因更有兩倍以上的明顯改變,另外也比對出191個有關聯的生物路徑。其中四個最活躍的途徑包括絲裂原活化蛋白激酶(MAPK)路徑,軸索引導通路 (Axon Guidance Pathway),Wnt通路,以及神經營養因子路徑 (Neurotrophin Pathway)。因此,這些研究顯示,在NGF誘導的神經元分化和炎症引起的疼痛調節現象中,多個信號轉導路徑會被活化,其中MAPK / ERK路徑的表現為明顯。此外,就像在體外的PC12模型系統中,神經生長因子也可在體內動物模型系統中,調節非主體的週邊刺激發炎所引起的疼痛反應。
摘要(英) Systems biology methodologies have the advantages of supplementing the conventional mode of study by facilitating the understanding of biological pathways and mechanisms in terms of their dynamic system behavior on different levels of organization rather than the static interaction among the individual molecular and cellular elements. In this study, I set up an in vivo and in vitro models to study the signal transduction pathways in each system. In the in vivo model, I investigated neuronal sensitivity to a noxious stimulus in a rat model of neonatal hind-paw peripheral inflammation and assessed changes in pain behavior at the physiological and molecular levels after peripheral reinflammation in adulthood. After reinflammation, an increase in the expression of the prodynorphin (proDYN) gene was noted in the spinal cord ipsilateral to the afferents of the neonatally treated hind paw. The involvement of the activation of extracellular signal-regulated kinases (ERK) in peripheral inflammatory pain hypersensitivity was evident by the increase in phospho-ERK (pERK) activity after reinflammation. This indicates that peripheral inflammation in neonates can alter the pain processing pathway through the activation of the MAPK/ERK pathway through the expression of the dynorphin. Due to the complexity of the animal models, signal transduction mechanisms are also examined in the PC12 cell culture systems. In this in vitro model, I investigated through the molecular biology paradigm, as well as high throughput experiments and system biology analysis, the genes and pathways associated with Nerve Growth Factor (NGF) induced neuronal differentiation, as PC12 cells were also known to produce dynorphin after NGF stimulation. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was used to match the data from microarray experiments to biologic networks in the KEGG database. Cross-matching to the KEGG gene database resulted in 830 genes. Among these, I identified 395 genes with their expressions significantly altered compared to the baseline expressions. I also identified 191 involved biologic pathways in the KEGG database. The most active pathways include the mitogen-activated protein kinase (MAPK) pathway, axonal guidance pathway, the Wnt pathway, and the neurotrophin pathway. Thus, these studies showed that in both the NGF induced neuronal differentiation and inflammation induced pain modulation, multiple pathways were activated including, most notably, the MAPK/ERK pathway. As in the in vitro PC12 model system, NGF may also play a role in the inflammation induced pain modulation in the in vivo animal model system.
關鍵字(中) ★ 系統生物學
★ 強啡肽原
★ 京都百科全書基因和基因組路徑資料庫
★ 絲裂原活化蛋白激酶
★ 信號轉導路徑
關鍵字(英) ★ Chemogenomic
★ Dynorphin
★ PC12 cell
★ Systems Biology
★ KEGG
★ inflammation
論文目次 English Abstract …………………………………………………………………i

Chinese Abstract …………………………………………………………………iii

Acknowledgment ………………………………………………………………...v

List of Figures ……………………………………………………………………vi

Table of Contents: ………………………………………………………………..viii

Chapter 1. General Introduction

    Dynorphins……………………..……………………………………… 1
Nerve Growth Factor……………………………………………………2
NGF and the signaling pathways………………………………………..3
NGF regulates the survival and maturation of developing neurons in
The peripheral nervous system (PNS)…………………………..…6
Involvement of NGF in pain nociception……………………………….7
PC12 cells as a model for studying NGF signaling cascade…………….9
Kyoto Encyclopedia of Genes and Genomes (KEGG)…………………10
Research Objective……………………………………………………...14

Chapter 2. Increased spinal prodynorphin gene expression in reinflammation-associated hyperalgesia after neonatal inflammatory insult

Backgrounds……………………………………….…………………….16
Methods………………………………………………..…………………19
Results………………………………………………..….……………….28
Discussions……………………………………………………………….33
Conclusion………………………………………………………………..42


Chapter 3. Chemogenomic Analysis of Neuronal Differentiation with Pathway Changes in PC12 Cells

Introduction………………………………………....................................44
Material and Methods………………………………………….…………46
Results…………………………………………………….…....................53
Discussion……….………………………………………………………..66

Chapter 4. Conclusion …………………………………………….………………...76

Chapter 5. Future Studies ……………………………………………………………80

Bibliography………………………………………………………………………...83

Appendix: Publications…………………………..…………………………………103
參考文獻 Bibliography

Alvares D, Fitzgeraid M. Building block of pain: The regulation f key molecules in spinal sensory neurons during development and following peripheral axotomy. Pain: S71-85, 1999 (Suppl 6)

Amann R, Schuligoi R, Herzeg G, Donnerer J. Intraplantar injection of nerve growth factor into the rat hind paw: Local edema and effects on thermal nociceptive threshold. Pain 1996, 64:323-329.

Angeletti PU, Gandini-attardi D, Toschi G, Alvi ML. Metabolic aspects of the effect of nerve growth factor on sympathetic and sensory ganglia: protein and ribonucleic acid synthesis. Biochim Biophys Acta. 1965 Jan 11; 95:111-20.

Anand KJ, Carr DB. The neuroanatomy, neurophysiology, and neurochemistry of pain, stress, and analgesia in newborns and children. Pediatr Clin North Am 1989, 36:795-822.

Anand KJ, Hickey PR. Pain and its effects in the human neonate and fetus. N Engl J Med 1987, 317:1321-9.

Asakura K, Ueda A, Kawamura N, Ueda M, Mihara T, Mutoh T. Clioquinol inhibits NGF-induced Trk autophosphorylation and neurite outgrowth in PC12 cells. Brain Res., 2009, Dec 8;1301: 110-115.

Averill S, McMahon SB, Clary DO, Reichardt LF, Priestley JV. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur J Neurosci 1995, 7:1484-1494.

Baginsky S, Hennig L, Zimmerman P, Gruissem W. Gene expression analysis, proteomics, and network discovery, Plant Physiol., 2010, 152, 402–410.

Bartel D, Sheng M, Lau L, Greenberg M. Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction, Genes Dev., 1989, 3, 304–313.

Basbaum AI. Spinal mechanisms of acute and persistent pain. Reg Anesth Pain Med 1999, 24:59-67.

Bian D, Ossipov MH, Ibrahim M, Raffa RB, Tallarida RJ, Malan TP Jr, Lai J, Porreca F. Loss of antiallodynic and antinociceptive spinal/supraspinal morphine synergy in nerve-injured rats: restoration by MK-801 or dynorphin antiserum. Brain Res 1999, 831:55-63.

Bodmer D, Levine-Wilkinson S, Richmond A, Hirsh S, Kuruvilla R. Wnt5a mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons. J Neurosci.,2009, 29(23), 7569-81.

Braun R. Systems Analysis of High–Throughput Data Adv Exp Med Biol. 2014; 844: 153–187. Methods Mol. Biol., 2009, 541, 249-267
Caminos E, Becker E, Martín-Zanca D, Vecino E. Neurotrophins and their receptors in the tench retina during optic nerve regeneration. J Comp Neurol. 1999 Feb 15;404(3):321-31.

Castaneda E, Whishaw IQ, Lermer L, Robinson TE. Dopamine depletion in neonatal rats: effects on behavior and striatal dopamine release assessed by intracerebral microdialysis during adulthood. Brain Res 1990, 508:30-9.

Chapman SB, McKinnon L. Discussion of developmental plasticity: factors affecting cognitive outcome after pediatric traumatic brain injury. J Commun Disord 2000, 33:333-44.

Chang JH, Mellon E, Schanen NC, Twiss JL. Persistent TrkA activity is necessary to maintain transcription in neuronally differentiated PC12 cells. J Biol Chem. 2003 Oct 31; 278(44):42877-85

Chien CC, Fu WM, Huang HI, Lai YH, Tsai YF, Guo SL, Wu TJ, Ling QD. Expression of neurotrophic factors in neonatal rats after peripheral inflammation. J Pain 2007, 8:161-7.

Chou AH, Howard BD. Inhibition by Wnt-1 or Wnt-3a of nerve growth factor-induced differentiation of PC12 cells is reversed by bisindolylmaleimide-I but not by several other PKC inhibitors. Oncogene, 2002, 21(41), 6348-55.

Clevers H. Wnt/beta-catenin signaling in development and disease. Cell, 2006, 127(3), 469-80.

Costigan M, Woolf CJ. No DREAM, No pain. Closing the spinal gate. Cell 2002, 108:297-300.

Crisanti P, Leon A, Lim DM, Omri B. Aspirin prevention of NMDA-induced neuronal death by direct protein kinase Czeta inhibition. J. Neurochem., 2005, 93, 1587-1593.

Ditcher MA, Tischler AS, Greene LA. Nerve growth factor-induced increase in electrical excitability and acetycholine sensitivity of a rat pheochromocytoma cell line. Nature. 1977 Aug 11; 268(5620): 501-4.

Djouhri L, Lawson SN. Abeta-fiber nociceptive primary affluent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Brain Res Rev 2004, 46:131-145.

Donnerer J, Schuligoi R, Stein C. Increased content and transport of substance P and calcitonin gene-related peptide in sensory nerves innervating inflamed tissue: Evidence for a regulatory function of nerve growth factor in vivo. Neuroscience 1992, 49:693-698.

Dreixler JC, Barone FC, Shaikh AR, Du E, Roth S. Mitogen-activated protein kinase p38alpha and retinal ischemic preconditioning. Exp. Eye Res., 2009, 89, 782–790.

Dubitzky W. Understanding the computational methodologies of systems biology. Brief Bioinform. 2006, Dec;7(4):315-7.

Dubner R, Ruda MA. Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci 1992, 15:96-103.

Fischer HP. Mathematical Modeling of Complex Biological Systems: from Parts Lists to Understanding Systems Behavior. Alcohol Res Health. 2008; 31(1): 49–59.

Fitzgerald M, Beggs S. The neurobiology of pain: developmental aspects. Neuroscientist 2001, 7:246-57.

Fitzgerald M. Developmental biology of inflammatory pain. Br J Anaesth 1995, 75:177-85.

Fitzgerald M. The development of nociceptive circuits. Nat Rev Neurosci 2005, 6:507-20.

Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L. Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci USA 1981, 78:7219-23.

Greenberg M, Ziff E. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene, Nature, 1984, 311, 433–438.

Hansen J, Iyengar R. Computation as the mechanistic bridge between precision medicine and systems therapeutics. Clin Pharmacol Ther. 2013, 93(1):117-28.

Han J, Dinculescu A, Dai X, Du W, Smith WC, Pang J. Review: The history and role of naturally occurring mouse models with Pde6b mutations. Mol Vis. 2013, 19: 2579–2589.

Harada T, Harada C, Nakayama N, Okuyama S, Yoshida K, Kohsaka S, Matsuda H, Wada K. Modification of glial-neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron. 2000 May;26(2):533-41.

Halegoua, S, and Patrick J. Nerve growth factor mediates phosphorylation of specific proteins. Cell 1980, 22:571-581.

Hendry IA, Stöckel K, Thoenen H, Iversen LL. The retrograde axonal transport of nerve growth factor. Brain Res. 1974 Mar 15;68(1):103-21.

Huang EJ and Reichardt LF. Neurotrophins: Roles in Neuronal Development and Function. Annu Rev Neurosci. 2001; 24: 677–736.

Humphrey T. Some observations on the development of the human hippocampal formation. Trans Am Neurol Assoc 1964, 89:207-9.

Hunt SP, Pini A, Evan G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 1987, 328:632-4.

Iadarola MJ, Douglass J, Civelli O, Naranjo JR. Increased spinal cord dynorphin mRNA during peripheral inflammation. NIDA Res Monogr 1986, 75:406-9.

Ji RR, Befort K, Brenner GJ, Woolf CJ. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci 2002, 22:478-85.

Ji RR, Baba H, Brenner GJ, Woolf CJ. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 1999, 2:1114-9.

Jiang SY, Zou YY, Wang JT. p38 mitogen-activated protein kinase-induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury. Mol. Vis., 2012, 18, 2096–2106.

Khatri P, Dr ˇghici S. Ontological analysis of gene expression data: current tools, limitations, and open problems, Bioinformatics, 2005, 21, 3587–3595.

Kolb B, Gibb R, Gorny G. Cortical plasticity and the development of behavior after early frontal cortical injury. Dev Neuropsychol 2000, 18:423-44

Kalisch B, Demeris C, Ishak M, Rylett R. Modulation of nerve growth factor-induced activation of MAP kinase in PC12 cells by inhibitors of nitric oxide synthase. J Neurochem. 2003 Dec;87(6):1321-32.

Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs, Nucleic Acids Res., 2010, 38, D355–D360.

Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG, Nucleic Acids Res., 2014, 42, 199-205.

Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res., 2000 Jan 1;28(1):27-30.

Kanehisa M. Representation and analysis of molecular networks involving diseases and drugs. Genome Inform. 2009 Oct;23(1):212-3.

Kitano H. Systems biology: a brief overview. Science, 2002, 295, 1662-1664.

Klukas C, Schreibe,F. Dynamic exploration and editing of KEGG pathway diagrams, Bioinformatics, 2007, 23, 344–350.

Knoll AT, Carlezon WA Jr. Dynorphin, stress, and depression. Brain Res. 2010 Feb 16;1314:56-73.

Lai J, Ossipov MH, Vanderah TW, Malan TP Jr, Porreca F. Neuropathic pain: the paradox of dynorphin. Mol Interv 2001, 1:160-7.

Lenzi L, Coassin M, Lambiase A, Bonini S, Amendola T, Aloe L. Effect of exogenous administration of nerve growth factor in the retina of rats with inherited retinitis pigmentosa. Vision Res. 2005 Jun;45(12):1491-500.

Lambiase A, Mantelli F, Bonini S. Nerve growth factor eye drops to treat glaucoma. Drug News Perspect. 2010 Jul-Aug; 23(6):361-7.

Lambiase A, Coassin M, Tirassa P, Mantelli F, Aloe L. Nerve growth factor eye drops improve visual acuity and electrofunctional activity in age-related macular degeneration: a case report. Ann Ist Super Sanita. 2009; 45(4):439-42.

Laughlin TM, Vanderah TW, Lashbrook J, Nichols ML, Ossipov M, Porreca F, Wilcox GL. Spinally administered dynorphin A produces long-lasting allodynia: involvement of NMDA but not opioid receptors. Pain 1997, 72:253-60.

Laughlin TM, Larson AA, Wilcox GL. Mechanisms of induction of persistent nociception by dynorphin. J Pharmacol Exp Ther 2001, 299:6-11.

Lee E, Williams Z, Goodman CB, Oriaku ET, Harris C, Thomas M, Soliman KF. Effects of NMDA receptor inhibition by phencyclidine on the neuronal differentiation of PC12 cells. Neurotoxicology, 2006, 27, 558-566.

Leslie TA, Emson PC, Dowd PM, Woolf CJ. Nerve growth factor contributes to the up-regulation of growth-associated protein 43 and preprotachykinin A messenger RNAs in primary sensory neurons following peripheral inflammation Neuroscience, 67 (1995), pp. 753–761.

Levi A, Eldridge J, Paterson M. Molecular cloning of a gene sequence regulated by nerve growth factor. Science, 1985, 229(4711), 393–395.

Levi-Montalcini, R. The nerve growth factor, its mode of action on sensory and sympathetic nerve cells. Harvey Lect. 1966, 60: 217-259.

Lewin GR, Ritter AM, Mendell LM. Nerve growth facto reinduced hyperalgesia in the neonatal and adult rat. J Neurosci. 1993, 13:2136-2148.

Li H, Sun Y, Zhan M. Exploring pathways from gene co-expression to network dynamics. Methods Mol. Biol., 2009, 541, 249-267.

Lindsay RM, Harmar AJ. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature 1989, 337:362-364.

Ling QD, Ruda MA. Neonatal persistent pain alters spinal neural circuitry. Soc Neurosci Abstr L. A., USA 1998, 386.

Ling QD, Chien CC, Wen YR, Fu WM, Sun WZ. The pattern and distribution of calcitonin gene-related peptide (CGRP) terminals in the rat dorsal following neonatal peripheral inflammation. Neuroreport 2003, 14:1919-21.

Logrip M, Janak P, Ron D. Dynophin is a downsteam effector of striatal BDNF regulation of ethanol intake. FASEB J. 2008 Jul;22 (7):2393-404

Lorigados L, Pavón N, Serrano T, Robinson MA. Nerve growth factor and neurological diseases. Rev. Neurol., 1998, 26, 744-8.

Ma QP, Woolf CJ. The progressive tactile hyperalgesia induced by peripheral inflammation is nerve growth factor dependent. Neuroreport 1997, 8:807-810.

Malan TP, Ossipov MH, Gardell LR, Ibrahim M, Bian D, Lai J, Porreca F. Extraterritorial neuropathic pain correlates with multisegmental elevation of spinal dynorphin in nerve-injured rats. Pain 2000, 86:185-94.


Mannion RJ, Costigan M, Decosterd I, Amaya F, Ma QP, Holstege JC, Ji RR, Acheson A, Lindsay RM, Wilkinson GA, Woolf CJ. Neurotrophins: Peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A 1999, 96:9385-9390.

Mantelli F, Lambiase A, Colafrancesco V, Rocco ML, Macchi I, Aloe L. NGF and VEGF effects on retinal ganglion cell fate: new evidence from an animal model of diabetes. Eur J Ophthalmol. 2014 Jan 20; 24(2): 247-253.


Margioris A, Markogiannakis E, Makrigiannakis A, Gravanis A. PC12 rat pheochromocytoma cells synthesize dynorphin. Its secretion is modulated by nicotine and nerve growth factor. Endocrinology. 1992 Aug;131(2):703-9.

Matsushima H, Bogenmann E. Nerve growth factor (NGF) induces neuronal differentiation in neuroblastoma cells transfected with the NGF receptor cDNA. Mol Cell Biol. 1990 Sep;10(9):5015-20.

Mazzio E, Huber J, Darling S, Harris N, Soliman KF. Effect of antioxidants on L-glutamate and N-methyl-4-phenylpyridinium ion induced-neurotoxicity in PC12 cells. Neurotoxicology, 2001, 22, 283-288.

Mearow KM. The effects of NGF and sensory nerve stimulation on collateral sprouting and gene expression in adult sensory neurons. Exp Neurol 1998, 151:14-25.

Mendell LM, Albers KM, Davis BM. Neurotrophins, nociceptors, and pain. Microsc Res Tech 1999, 45:252-261.

Malan TP, Ossipov MH, Gardell LR, Ibrahim M, Bian D, Lai J, Porreca F. Extraterritorial neuropathic pain correlates with multisegmental elevation of spinal dynorphin in nerve-injured rats. Pain 2000, 86:185-94.

Michael GJ, Averill S, Nitkunan A, Rattray M, Bennett DL, Yan Q, Priestley JV. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci 1997, 17:8476- 8490.

Mizumura K, Murase S. Role of nerve growth factor in pain. Handb Exp Pharmacol. 2015;227:57-77.

Mufson EJ, He B, Nadeem M, Perez SE, Counts SE, Leurgans S, Fritz J, Lah J, Ginsberg SD, Wuu J, Scheff SW. Hippocampal proNGF signaling pathways and β-amyloid levels in mild cognitive impairment and Alzheimer disease. J Neuropathol Exp Neurol. 2012 Nov;71(11):1018-29.

Nankova BB, Chua J, Mishra R, Kobasiuk CD, La Gamma EF. Nicotinic induction of preproenkephalin and tyrosine hydroxylase gene expression in butyrate-differentiated rat PC12 cells: a model for adaptation to gut-derived environmental signals. Pediatr. Res., 2003, 53, 113-118.

Nobre RJ, Almeida LP. Gene therapy for Parkinson′s and Alzheimer′s diseases: from the bench to clinical trials. Curr Pharm Des. 2011;17(31):3434-45.

Noguchi K, Kowalski K, Traub R, Solodkin A, Iadarola MJ, Ruda MA. Dynorphin expression and Fos-like immunoreactivity following inflammation induced hyperalgesia are colocalized in spinal cord neurons. Brain Res Mol Brain Res 1991, 10:227-33.

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H and Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res., 1999, 27, 29–34.

Ossipov MH, Lai J, Vanderah TW, Porreca F. Induction of pain facilitation by sustained opioid exposure: relationship to opioid antinociceptive tolerance. Life Sci 2003, 73:783-800.

Peng YB, Ling QD, Ruda MA, Kenshalo DR. Electrophysiological changes in adult rat dorsal horn neurons after neonatal peripheral inflammation. J Neurophysiol 2003, 90:73-80.

Pezet S, Malcangio M, McMahon SB. BDNF: A neuromodulator in nociceptive pathways? Brain Res Brain Res Rev 2002, 40:240-249.

Pezet S, Onteniente B, Jullien J, Junier MP, Grannec G, Rudkin BB, Calvino B. Differential regulation of NGF receptors in primary sensory neurons by adjuvant-induced arthritis in the rat. Pain 2001, 90:113-125.

Qin X, Kojima Y,Mizuno K, Ueoka K, Muroya K, Zaha H, Akanuma H, Zeng Q, Fukuda T, Yoshinaga J, Yonemoto J, Kohri H, Hayashi Y, Fukami M, Ogata T and Sone H. Identification of novel low-dose bisphnol a targets in human foreskin fibroblast cells derived from hypospadias patients, PLoS One, 2012,7(5), e36711.

Reddy UR, Pleasure S, Baker D, Lee VM, Ross AH, Pleasure D. Primitive neuroectodermal tumors (PNETs) of the CNS and PNS that express functional nerve growth factor receptors (NGFR) but fail to differentiate in response to NGF. Prog Clin Biol Res. 1991;366:243-8.

Ren K, Anseloni V, Zou SP, Wade EB, Novikova SI, Ennis M, Traub RJ, Gold MS, Dubner R, Lidow MS. Characterization of basal and reinflammation- associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult. Pain 2004, 110:588-96.

Reynolds ML, Fitzgerald M. Long-term sensory hyperinnervation following neonatal skin wounds. J Comp Neurol 1995, 358:487-98.


Ruda MA, Ling QD, Hohmann AG, Peng YB, Tachibana T. Altered nociceptive neuronal circuits after neonatal peripheral inflammation. Science 2000, 289:628-31.

Roduit R, Schorderet DF. MAP kinase pathways in UV-induced apoptosis of retinal pigment epithelium ARPE19 cells. Apoptosis, 2008,13, 343-53.

Rezaee F, Rellick SL, Piedimonte G, Akers SM, O′Leary HA, Martin K, Craig MD, Gibson LF. Neurotrophins regulate bone marrow stromal cell IL-6 expression through the MAPK pathway. PLoS One, 2010, 5(3), e9690

Salinas PC. Retrograde signaling at the synapse: a role for Wnt proteins. Biochem Soc Trans., 2005, 33, 1295-8.

Schwamborn JC, Fiore R, Bagnard D, Kappler J, Kaltschmidt C, Püschel AW. Semaphorin 3A stimulates neurite extension and regulates gene expression in PC12 cells. J Biol Chem. 2004 Jul 23;279(30):30923-6.

Sanyal S, Sandstrom DJ, Hoeffer CA, Ramaswami M. AP-1 functions upstream of CREB to control synaptic plasticity in Drosophila. Nature 2002, 416:870-4.

Santos SD, Verveer PJ, Bastiaens PI. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol., 2007, 9, 324-330.

Sanyal S, Sandstrom DJ, Hoeffer CA, Ramaswami M. AP-1 functions upstream of CREB to control synaptic plasticity in Drosophila. Nature 2002, 416:870-4.

Schwamborn J, Fiore R, Bagnard D, Appler J, Kaltschmidt C, Puschel A. Semaphorin 3A stimulates neurite extension and regulates gene expression in PC12 cells, J. Biol. Chem., 2004, 279(30), 30923–30926.

Schicho R, Skofitsch G, Donnerer J. Regenerative effect of human recombinant NGF on capsaicin-lesioned sensory neurons in the adult rat. Brain Res 1999, 815:60-69.

Schwarzer C. 30 years of dynorphins--new insights on their functions in neuropsychiatric diseases. Pharmacol Ther. 2009 Sep;123(3):353-70.

Seigel G. Review: R28 retinal precursor cells: the first 20 years. Mol Vis. 2014 Mar 14;20:301-6

Siniscalco D, Giordana C, Rossi F, Maione S, deNovellis V. Role of neurotrophoins in neuropathis pain. Curr Neuropharmacol. 2011 Dec; 9(4): 523-9.

Snoep JL , Westerhoff, HV. (2005) From Isolation to Integration, a Systems Biology Approach for Building the Silicon Cell. In Systems Biology: Definitions and Perspectives. Topics in Current Genetics, vol 13, edited by L. Alberghina, L. & H.V. Westerhoff. Springer-Verlag, Berlin, pp. 13-30.

Sofroniew MV, Howe CL, Mobley WC. Nerve Growth Factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci. 2001, 24: 1217-81.

Song Y, Wei EQ, Zhang WP, Ge QF, Liu JR, Wang ML, Huang XJ, Hu X, Chen Z. Minocycline protects PC12 cells against NMDA-induced injury via inhibiting 5-lipoxygenase activation. Brain Res., 2006, 1085, 57-67.

Sun P, Watanabe H, Takano K, Yokoyama T, Fujisawa J, Endo T. Sustained activation of M-Ras induced by nerve growth factor is essential for neuronal differentiation of PC12 cells. Genes Cells, 2006, 11, 1097-1113.

Tachibana T, Ling QD, Ruda MA. Increased Fos induction in adult rats that experienced neonatal peripheral inflammation. Neuroreport 2001, 12:925-7.

Taniuchi M1, Clark HB, Schweitzer JB, Johnson EM Jr. Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression byaxonal contact, and binding properties. J Neurosci. 1988 Feb;8(2):664-81.

Thanos S, Bähr M, Barde YA, Vanselow J. Survival and axonal elongation of adult rat retinal ganglion cells. Eur J Neurosci. 1989 Jan; 1(1):19-26.

Thoenen, H and Barde YA. Physiology of nerve growth factor. Physiol. Rev. 1980, 60:1284-1334.

Tischler AS, Powers JF, Alroy J. Animal models of pheochromocytoma. Histol Histopathol. 2004 Jul;19(3):883-95.

Tischler AS, Greene LA. Nerve growth factor-induced process formation by cultured rat pheochromocytoma cells. Nature, 1975, 258, 341-342.

Tomita M , Mori T, Maruyama K, Zahir T, Ward M, Umezawa A, Young MJ. A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells. Stem Cells 2006 Oct; 24(10):2270-8.

Torsney C, Fitzgerald M. Spinal dorsal horn cell receptive field size is increased in adult rats following neonatal hindpaw skin injury. J Physiol 2003, 550:255-61.

Trafton JA, Abbadie C, Marchand S, Mantyh PW, Basbaum AI. Spinal opioid analgesia: how critical is the regulation of substance P signaling? J Neurosci 1999, 19:9642-53.

Tuszynski MH. Nerve growth factor gene therapy in Alzheimer disease. Alzheimer Dis Assoc Disord. 2007 Apr-Jun;21(2):179-89.

Valman HB, Pearson JF. What the fetus feels. Br Med J 1980, 280:233-4

Vanderah TW, Laughlin T, Lashbrook JM, Nichols ML, Wilcox GL, Ossipov MH, Malan TP Jr, Porreca F. Single intrathecal injections of dynorphin A or des-Tyr-dynorphins produce long-lasting allodynia in rats: blockade by MK-801 but not naloxone. Pain 1996, 68:275-81.

Vaudry D, Stork PJ, Lazarovici P, Eiden LE. Signaling pathways for PC12 cell differentiation: making the right connections. Science, 2002, 296, 1648-1649.

Walker SM, Meredith-Middleton J, Cooke-Yarborough C, Fitzgerald M. Neonatal inflammation and primary afferent terminal plasticity in the rat dorsal horn. Pain 2003, 105:185-95.

Wang G, Ji Y, Lidow MS, Traub RJ. Neonatal hind paw injury alters processing of visceral and somatic nociceptive stimuli in the adult rat. J Pain 2004, 5:440-9.

Wheelock CE, Wheelock AM, Kawashima S, Diez D, Kanehisa M, van Erk M, Kleemann R, Haeggström JZ, Goto S. Systems biology approaches and pathway tools for investigating cardiovascular disease. Mol Biosyst., 2009, 5(6), 588-602.

Woolf CJ. Phenotypic modification of primary sensory neurons: The role of nerve growth factor in the production of persistent pain. Philos Trans R Soc Lond [B] 1996, 351:441-448.

Woolf CJ, Safieh-Garabedian B, Ma QP, Crilly P, Winter J. Nerve growth factor contributes to the generation of in- flammatory sensory hypersensitivity. Neuroscience 1994, 62:327-331.

Woolf CJ, Costigan M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci USA 1999, 96:7723-30.

Yaar M,Grossman K, Eller M, Gilchrest BA. Evidence for nerve growth factor-mediated paracrine effects in human epidermis. J Cell Biol. 1991 Nov;115(3):821-8.
指導教授 凌慶東(Qing-Dong Ling) 審核日期 2016-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明