科目 普通物理

類組別

A3 A6 A7

共_/ 頁 第5頁

*請在答案卡內作答

單選題,每題5分,共20題。

- 1. A block with mass m is vertically attached between two ideal springs with the force constant k and vertically oscillates (Fig. 1). What is the angular frequency?
 - (a) $\sqrt{m/k}$
 - (b) $\sqrt{k/m}$
 - (c) $\sqrt{2m/k}$
 - (d) $\sqrt{2k/m}$
 - (e) $2\sqrt{k/m}$
- 2. Assume that the moon rotates around the earth with radius of 4×10^8 m. What is the orbital period? The gravitational constant $G = 6.67 \times 10^{-11} \mathrm{Nm^2/kg^2}$, and the earth's mass $M_E = 5.97 \times 10^{24}$ kg.

Fig. 1 Problem 1

- (a) $2.5 \times 10^4 \text{ s}$
- (b) 2.5×10^5 s
- (c) $2.5 \times 10^6 \text{ s}$
- (d) $2.5 \times 10^7 \, \text{s}$
- (e) $2.5 \times 10^8 \text{ s}$
- 3. A pendulum placed on the earth's surface has the period of 1 s. What is the period of this pendulum when placed on the moon surface? The radius and mass of the moon are 3/11 and 1/81 of the earth, respectively.
 - (a) 0.1 s
 - (b) 0.4 s
 - (c) $1 \, s$
 - (d) 2.5 s
 - (e) 10 s
- 4. An apple with mass 0.1 kg falls off from 10 m high to the ground. What is velocity of the apple when it hits the ground (friction is negligible)? The gravitational acceleration on the earth $g = 9.8 \text{ m/s}^2$.
 - (a) 14 m/s
 - (b) 100 m/s
 - (c) 0.1 m/s
 - (d) 1 m/s
 - (e) 10 m/s
- 5. A boy stands on a board placed on a ice (frictionless). The mass of the boy including the board is 20 kg. When he throws a ball with mass of 1 kg to the right at the speed of 10 m/s (Fig. 2), what is the velocity of the boy and board?
 - (a) 10 m/s to the left
 - (b) 10 m/s to the right
 - (c) 0.5 m/s to the left
 - (d) 0.5 m/s to the right
 - (e) 0 m/s

注:背面有試題

科目 普通物理

類組別 A3 A6 A7 共 2 頁 第 5 頁

*請在答案卡內作答

- 6. Two point charges q and -q are fixed at two corners of an equilateral triangle with side of a as shown in Fig. 3. What is the magnitude of electric field at the other corner?

 - (e) 0

Fig. 3 Problem 6

- 7. A conducting sphere of radius a has a charge q. It is enclosed by a conducting shell of radius b with a charge -q as shown in Fig. 4. What is the potential difference $V = \phi(a) - \phi(b)?$

 - (d) $\frac{-2q}{4\pi\epsilon_0}\frac{1}{b}$ (e) $\frac{q}{4\pi\epsilon_0}(\frac{1}{a}-\frac{1}{b})$

Fig. 4 Problem 7

- 8. When there is no current through G in Fig. 5, what is the resistance R_4 ?
 - (a) $\frac{R_2R_3}{R_3}$

Fig. 5 Problem 8

科目___普通物理

類組別___A3 A6 A7

共3頁第5頁

*請在答案卡內作答

- 9. A very long wire and a loop are in the same plane and carrying current I_1 and I_2 as shown in Fig. 6. Which is the direction of the force on the loop.
 - (a) Parallel to I_1
 - (b) Perpendicular to I_1 and repulsive
 - (c) Perpendicular to I_1 and attractive
 - (d) Perpendicular to the plane
 - (e) No force

- Fig. 6 Problem 9
- 10. A laser with power of 100 TW (= 100×10^{12} W) is perfectly reflected by a mirror in the normal incidence frame. What is the force exerted on the mirror?
 - (a) $3.3 \times 10^5 \text{ N}$
 - (b) $6.7 \times 10^5 \text{ N}$
 - (c) $3.3 \times 10^6 \text{ N}$
 - (d) $6.7 \times 10^6 \text{ N}$
 - (e) No force
- 11. One kilogram of liquid water at 100° C and 1 atm is vaporized to steam at the same temperature. The latent heat of vaporization of water is 2.3×10^{6} J/kg. The steam density at 1 atm is 0.6 kg/m³, and 1 atm is 1.0×10^{5} N/m². The volume of liquid water is negligible when compared with that of steam. What is the increase of internal energy?
 - (a) $2.1 \times 10^6 \text{ J}$
 - (b) $2.3 \times 10^6 \text{ J}$
 - (c) $2.5 \times 10^6 \text{ J}$
 - (d) $4.0 \times 10^6 \text{ J}$
 - (e) $1.7 \times 10^5 \text{ J}$
- 12. A Carnot engine operates between 27°C and -23°C. What is the efficiency?
 - (a) 100 %
 - (b) 83 %
 - (c) 54 %
 - (d) 47 %
 - (e) 17 %

注:背面有試題

科目_ 普通物理

類組別

A3 A6 A7

共 4 頁 第 5 頁

*請在答案卡內作答

- 13. Figure 7 shows a Carnot cycle in temperature (T) entropy (S) diagram. Using TdS = dU + pdV, where U is internal energy, p is pressure, and V is volume, find the work done in each cycle in the T-S diagram.
 - (a) a
 - (b) b
 - (c) c
 - (d) d
 - (e) e

Fig. 7 Problem 13

- 14. Consider a thermodynamic equilibrium of H_2 and O_2 gases. What is the ratio of the root mean square speeds $\sqrt{\bar{v}_{H2}^2}/\sqrt{\bar{v}_{O2}^2}$?
 - (a) 1/16
 - (b) 16
 - (c) 1
 - (d) 1/4
 - (e) 4
- 15. The work function of sodium is 2.0 eV. A beam with a wavelength of 500 nm (= 500×10^{-9} m) illuminates the surface, what is the maximum kinetic energy of the photoelectrons? Here 1 eV = 1.6×10^{-19} J, the Plank's constant $h = 6.6 \times 10^{-34}$ J·s, and the speed of light $c = 3.0 \times 10^{8}$ m/s.
 - (a) 1. 0 eV
 - (b) 4.5 eV
 - (c) 0.5 eV
 - (d) 2.5 eV
 - (e) 2.0 eV
- 16. X rays of wavelength 0.01 nm (= 0.01×10^{-9} m) are Compton scattered though an angle of 60°. What is the kinetic energy of the scattered electrons, which are initially at rest? Here 1 eV = 1.6×10^{-19} J, the Plank's constant $h = 6.6 \times 10^{-34}$ J s, the speed of light $c = 3.0 \times 10^8$ m/s, and the Compton wavelength $\lambda_c = 2.42 \times 10^{-12}$ m.

- (b) $1.3 \times 10 \text{ eV}$
- (c) $1.3 \times 10^2 \text{ eV}$
- (d) $1.3 \times 10^3 \text{ eV}$
- (e) $1.3 \times 10^4 \text{ eV}$

台灣聯合大學系統 104 學年度學士班轉學生考試試題

科目 普通物理

類組別

A3 A6 A7

共5頁第5頁

*請在答案卡內作答

- 17. What is the de Broglie wavelength of an electron with speed of 10^6 m/s? The Plank's constant $h = 6.6 \times 10^{-34} \text{J} \cdot \text{s}$, and the electron mass $m_e = 9.1 \times 10^{-31} \text{ kg}$.
 - (a) 7.3×10^{-9} m

 - (b) 7.3×10^{-10} m (c) 7.3×10^{-11} m
 - (d) $7.3 \times 10^{-12} \text{ m}$
 - (e) $7.3 \times 10^{-13} \text{ m}$
- 18. A rod has a proper length of 1 m in reference frame K'. In reference frame K the rod is half of its proper length. What is the velocity difference between K and K'? Here c is the speed of light.
 - (a) c/4
 - (b) c/2
 - (c) 3c/4
 - (d) $\sqrt{3}c/2$
 - (e) c
- 19. A rocket A moves with speed of c/2 relative to the earth (E) reference frame. A rocket B moves with c/2 relative to A in the same direction. What is the velocity of B relative to E? Here c is the speed of light.
 - (a) c
 - (b) 4c/5
 - (c) 2c/3
 - (d) c/2
 - (e) 0
- 20. What is the speed of electron with kinetic energy of 1.5 MeV (without including the rest mass energy of $m_e c^2 = 0.5$ MeV)? Here $c = 3.0 \times 10^8$ m/s is the speed of light.
 - (a) $1.5 \times 10^8 \text{m/s}$
 - (b) $2.0 \times 10^8 \text{m/s}$
 - (c) $2.5 \times 10^8 \text{m/s}$
 - (d) $2.8 \times 10^8 \text{m/s}$
 - (e) $3.0 \times 10^8 \text{m/s}$

