博碩士論文 942206019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.144.40.216
姓名 陳泳智(Yong-Zhi Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究
(Excitation of fundamental whispering-gallery modes in a microsphere by a half-block coupler)
相關論文
★ 以氬離子雷射對玻璃材料加工之研究★ 以裸光纖激發球共振腔之共振譜研究
★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件
★ S型彎曲波導與微米小球共振腔之光耦合效率研究★ 錐狀光纖與微米球共振腔耦合之研究與應用
★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究★ 利用光子晶體的能隙邊緣移動達成全光開關之研究
★ 利用繞射圖形檢測錐狀光纖的製造與品質★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器
★ 光學印刷電路板之製作與特性分析★ 鈉鉀離子交換波導之製作及其表面消逝波之研究
★ 拉伸式長週期光纖光柵的模態色散現象研究★ 可調式窄頻液晶濾波器
★ 基於D形光纖之拉曼感測器模擬與設計★ 基於D形光纖之拉曼感測器製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究以側磨光纖半塊材耦合器激發微米球型共振腔之基模。耦合器以長程光通訊之單模光纖製作(Corning SMF-28),其等效折射率為1.4682 @1550nm ;微米小球則以BK7玻璃製作,其半徑為150±1.5微米,折射率為1.50065 @1550nm。所使用的光源為波段1545nm至1565nm的放大自發性輻射(ASE),寬頻光波進入耦合器後,其中某些特定波長的光波藉由耦合器以消散場的形式耦合進入微米球型共振腔,形成共振模態。本實驗所達到的最高耦合效率為10%,品質因子為17000以及自由光譜範圍為1.7nm。
摘要(英) A simple method for the excitation of fundamental whispering-gallery modes in a BK7 glass microsphere by a side-polished fiber half-block coupler is demonstrated. The coupler is made of the single-mode fiber (Corning SMF-28) which has an effective refractive index of 1.4682 @1550nm. The radius and refractive index of the microsphere equal to 150± 1.5 um and 1.500065 @1550 nm, respectively. The resonant modes are identified from the transmission spectrum, which indicates that the quality factor of 17000, free spectral range of 1.7 nm and coupling efficiency of 10% are obtained.
關鍵字(中) ★ 微米球
★ 品質因子
★ 耳語廊模
關鍵字(英) ★ whispering-gallery mode
★ microsphere
★ quality factor
★ half-block coupler
論文目次 Table of Contents
Abstract
List of Tables
List of Figures
Chapter 1 Introduction……….…………………1
1-1 Background…………..............…………………………...1
1-2 Motivation……………………………………………....4
1-3 Thesis organization……………..…………….…………..7
Chapter 2 Theory………………………………9
2-1 Introduction………………………………………………...9
2-2 Effective index of half-block coupler...……....…..……….12
2-2-1 Effective refractive index………………………….12
2-2-2 Modal profile………………………………………15
2-3 Resonant modes of a microsphere………………………16
2-3-1 Wave function of WGMs………………………..16
2-3-2 Optical ray in the microsphere…………………….22
2-4 Quality factors and coupling efficiency………………….23
2-4-1 Quality factor………….….……………………….23
2-4-2 Loss mechanisms..….…….……………………….25
2-4-3 Whispering-gallery quality factor...……………….26
2-4-4 Scattering and absorption quality factor……….….27
2-4-5 External quality factor………….....……………….27
2-4-6 parasitic quality factor………….....……………….29
2-4-7 Coupling efficiency…………….....……………….30
Chapter 3 Experiments………………………33
3-1 Introduction….....................................................................33
3-2 Fabrication of the half-block coupler…………………...34
3-2-1 The fabrication process…………...……………….34
3-2-2 The line breaking cracks and the transmission degradation………………………………………..36
3-3 Experimental setup……………..…………………………38
3-4 Measurement and discussion……………………………...39
3-4-1 The transmission spectrum of excited WGMs.........39
3-4-2 Polarization dependent loss of half-block coupler...46
3-4-3 Transversal position dependence of the coupling efficiency……………………...……..……………47
Chapter 4 Summary and future work………49
4-1 Summary……………………………………………..…...49
4-2 Future work……………………………………………...51
Reference…………………………………..52
參考文獻 [1] R.K. Chang and A. J. Campillo, Eds., “Optical Processes in Microcavities.” (Advanced Series in Applied Physics), vol. 3, Singapore: World Scientific, 1996
[2] A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-gallery Modes- Part I: Basics,” IEEE Journal of selected topics in quantum electronics, vol. 12, NO. 1, 2006
[3] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “ Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 043902, 2003
[4] A. B. Matsko and V. S. Ilchenko, “High-Q optical whispering gallery microresonators-precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun.,113, 133-143, 1994
[5] M. L. Gorodetsky and V. S. Ilchenko, “ Optical microsphere resonators: Optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Amer. B, 16, 147-154, 1999
[6] S. Shiller and R. L. Byer, “ High-resolution spectroscopy of whispering gallery modes in large dielectric sphere,” Opt. Lett., 16, 130-132, 1991
[7] F. C. lom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, “ Experimental study of integrated-optics microcavity resonators: Toward an all-optical switching device,” Appl. Phys. Lett. 71 (6), 1997
[8] Thanh Le, Anatoliy, A. Savchenkov, Hidehisa Tazawa, William H. Steier, and Lute Maleki, “ Polymer Optical Waveguide Vertically Coupled to High-Q Whispering Gallery Resonators,” J. Lightwave Techonl., 18, NO.7 , 859-861, 2006
[9] J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “ Phase-matched excitation of whispering-gallery-mode resonnaces by a fiber taper,” Opt. Lett., 22, No.15, 1129-1131, 1997
[10] B. E. Little, J. –P. Laine, D. R. Lim, H. A. Haus, L. C. Kimerling, and S. T. Chu, “Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits,” Opt. Lett., 25, No.1, 73-75, 2000
[11] J.-P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “ Microsphere Resonator Mode Characterization by Pedestal Anti-Resonant Reflecting Waveguide Coupler,” IEEE J. Photon. Technol. Lett., 12, NO. 8, 1004-1006, 2000
[12] N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefèvre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett., 20, NO. 8, 1995
[13] Ming Cai, Guido Hunziker, and Kerry Vahala, “ Fiber-Optic Add-Drop Device Based on a Silica Microsphere-Whispering Gallery Mode System,” IEEE J. Photon. Technol. Lett., 11, NO. 6, 1999
[14] B. E. Little, J. –P. Laine, and H. A. Haus, “Analytical theory of coupling from tapered fibers and halfblocks into microsphere resonators,” J. Lightwave Technol. 17, 704-715 (1999).
[15] A. W. Snyder and J. D. Love, Optical Waveguide Theory. New York: Chapman and Hall, 1983.
[16] A.A. Savchenkov, A.B. Matsko, D. Strekalov, V.S. Ilchenko and L. Maleki, “Mode filtering in optical whispering gallery resonators, ” ELECTRONICS LETTERS, Vol. 41, No. 8, 2005
[17] O. Svelto, Principles of lasers. 3rd ed. Chapter 4, 1989
[18] K. Vahala, Optical Microcavities, World Scientific Publishing Company, 2004
[19] M. Kuznetsov and H. A. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron., vol. QE-19, pp. 1505–1514, 1983.
[20] http://www.corning.com/
[21] http://www.mellesgriot.com/
[22] M. Hossein-Zadeh, and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14, No. 12, pp.10800-10810, 2006
[23] A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilo-Hertz optical resonances in dielectric crystal cavities,” Phys. Rev. A, vol. 70, pp. 051–804, 2004.
[24] V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering gallery modes,” Phys.Lett. A, vol. 137, pp. 393–397, 1989.
[25] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip.” Appl. Phys. Lett. 85 (25), 2004
[26] T. J. Kippenberg, “Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities, “California Institute of Technology, thesis for the degree of doctor of philosophy, 2004.
指導教授 戴朝義(Chao-Yi Tai) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明