博碩士論文 89322016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.191.97.133
姓名 王韡蒨(Wei-Chien Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 台灣地區活性粒料之檢測方法研究
(Study of the test methods to identify the reactivity of aggregate in Taiwan)
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究
★ 經高溫製程產生含矽再生粒料之鹼質活性研究★ 改質人工粒料的應用策略基礎研究
★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究
★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 邇來在興建重要工程之時,主辦單位相當重視在施工前對粒料活性進行檢測,以避免使用活性粒料造成混凝土在數年後發生鹼質與粒料反應。在研析世界各國相關規範後,發現理論基礎相似之試驗方法,在相關試驗變數上多作模糊說明或有不同之規定,且對活性粒料的判定標準亦有不同,顯示許多國家都已建立起適合當地的試驗規範與判定標準。國內專家學者曾對本島29條河川進行粒料活性調查,其中至少有11條河川產的粒料結論不一致,因此本研究的目的在以接受度較高的ASTM C1293為基礎,釐清各種不同試驗間包括ASTM C289、C1260、C227、中國及日本蒸壓法、其他新發展方法及岩相分析等方法之相關性,提出適合於台灣地區活性粒料檢測方法之建議,以供日後建立CNS規範參考,避免誤用活性粒料影響混凝土耐久性。研究成果包括四個主要部份:1.對現有規範運用於台灣地區活性粒料之檢測結果、試驗方法間之相關性比較、適合於台灣地區活性粒料之判別標準檢討;2.岩相分析運用於鹼質與粒料反應之檢測研究;3.發展準確、快速且適合台灣地區活性粒料之檢測方法及判定標準;4.提出適合於台灣地區活性粒料之檢測方法及運用流程之建議。
摘要(英) Identification of aggregate reactivity is required in many concrete construction projects to reduce the possibility of inducing expansive alkali-aggregate reaction. However, many conflict results have obtained due to many parameters listed in the specifications are not clearly defined. Study of related specifications in the world, the test methods with the same philosophy contain different parameters and different accept level for non-reactive aggregate. The purposes of this research are to clearly establish a test method and accept level for identification of reactive aggregate in Taiwan. ASTM C1293, the concrete prism expansion test, will be the basis of this research. Different methods including ASTM C227, ASTM C1260, and improving methods are to be test. Tests including C289, C227, autoclave method, and petrographic examination of aggregates are used to compare the results of C1293 for defining the accept level for non-reactive aggregate. The results of this research will be the reference for establishment of CNS specification.
關鍵字(中) ★ 鹼質與粒料反應
★ 岩相分析
★ 活性粒料
★ 混凝土
關鍵字(英) ★ petrographic examination
★ reactive aggregate
★ concrete
★ alkali-aggregate reaction
論文目次 目 錄
中文摘要
英文摘要
符號對照表
第一章 研究動機內容及目的-----------------------------------------------------1
1.1 研究動機------------------------------------------------------------------------------1
1.2 研究內容------------------------------------------------------------------------------3
1.3 研究目的------------------------------------------------------------------------------4
第二章 文獻回顧-----------------------------------------------------------------------5
2.1 鹼質與粒料反應種類及機理------------------------------------------------------5
2.1.1 鹼-氧化矽反應----------------------------------------------------------------5
2.1.1.1 矽石(silica)對鹼-氧化矽反應的影響-----------------------------6
2.1.1.2 鹼-氧化矽反應的形式-------------------------------------------------8
2.1.1.3 鹼-氧化矽反應機理---------------------------------------------------10
2.1.2 鹼-矽酸鹽反應--------------------------------------------------------------13
2.1.3 鹼-碳酸鹽反應--------------------------------------------------------------14
2.2 鹼質與粒料反應的徵狀----------------------------------------------------------16
2.2.1 外觀徵狀-----------------------------------------------------------------------16
2.2.1.1 純混凝土構造物---------------------------------------------------------16
2.2.1.2 鋼筋混凝土構造物------------------------------------------------------19
2.2.2 混凝土構造物內部徵狀-----------------------------------------------------19
2.2.2.1 反應圈---------------------------------------------------------------------21
2.3 鹼質與粒料反應的影響因素----------------------------------------------------21
2.3.1 混凝土中含有反應的活性粒料--------------------------------------------22
2.3.2 孔隙溶液中需含有足夠的氫氧化鹼濃度--------------------------------22
2.3.3 足夠的濕度--------------------------------------------------------------------24
2.3.4 其他影響鹼質與粒料反應的因素-----------------------------------------24
2.4 鑑定方法之類型與比較----------------------------------------------------------27
2.4.1 粒料活性試驗之條件--------------------------------------------------------27
2.4.2 各國試驗規範介紹-----------------------------------------------------------28
2.4.3 各國試驗規範比較-----------------------------------------------------------30
2.4.4 我國國家標準-----------------------------------------------------------------36
2.4.5 其他鑑定方法-----------------------------------------------------------------37
2.4.6 RILEM針對國際AAR研究調查報告--------------------------------------40
2.4.6.1 試驗方法調查報告------------------------------------------------------40
2.4.6.2 試驗程序調查報告------------------------------------------------------41
2.5 相關研究對慣用規範之適用性評估-------------------------------------------42
2.5.1 岩相法(ASTM C295)----------------------------------------------------42
2.5.2 化學法(ASTM C289)----------------------------------------------------42
2.5.3 砂漿棒法(ASTM C227)-------------------------------------------------43
2.5.4 混凝土角柱法(ASTM C1293與CSA A23.2-14A)-------------------44
2.5.5 快速砂漿棒法(ASTM C1260與CSA A23.2-25A)-------------------45
2.6 試驗方法間之比較研究----------------------------------------------------------47
2.6.1 加速砂漿棒法(AMBT)與混凝土角柱試驗法(CPT)比較------47
2.6.2 混凝土角柱試驗法(CPT)與加速混凝土角柱試驗法(ACPT)
比較-----------------------------------------------------------------------------51
2.6.3 快速砂漿棒法(AASHTO T303)與化學法(ASTM C289)比較--52
2.6.4 快速砂漿棒法(ASTM C1260)與傳統砂漿棒法(ASTM C227)
比較----------------------------------------------------------------------------53
2.7 台灣地區鹼質與粒料反應問題及研究現況----------------------------------55
2.8 台灣地區地質及岩石分佈-------------------------------------------------------61
2.9 國內生產砂石粒料種類調查----------------------------------------------------67
2.10 各國鹼質與粒料反應研究發展現況------------------------------------------69
2.10.1 中國鹼質與粒料反應研究-------------------------------------------------69
2.10.2 韓國鹼質與粒料反應研究-------------------------------------------------70
2.10.3 澳大利亞鹼質與粒料反應研究-------------------------------------------70
2.10.4 紐西蘭鹼質與粒料反應研究---------------------------------------------72
2.10.5 丹麥鹼質與粒料反應研究-------------------------------------------------72
2.10.6 挪威鹼質與粒料反應研究-------------------------------------------------73
2.10.6.1 試驗法-------------------------------------------------------------------73
2.10.6.2 挪威判斷粒料活性程序----------------------------------------------73
2.10.7 冰島鹼質與粒料反應研究------------------------------------------------73
2.10.8 法國鹼質與粒料反應研究-------------------------------------------------74
2.10.9 荷蘭鹼質與粒料反應研究-------------------------------------------------74
2.10.10 葡萄牙鹼質與粒料反應研究--------------------------------------------76
2.10.11 英國鹼質與粒料反應研究-----------------------------------------------76
2.10.12 加拿大鹼質與粒料反應研究--------------------------------------------76
2.10.12.1 粒料活性反應評估---------------------------------------------------77
2.10.12.2 實驗室研究------------------------------------------------------------77
2.10.13 美國鹼質與粒料反應研究-----------------------------------------------81
2.10.13.1 大西洋中部區域技術委員會---------------------------------------81
2.10.13.2 AASHTO ASR Lead State Team------------------------------------82
2.10.13.3 波特蘭水泥協會------------------------------------------------------85
2.10.13.4 奧斯丁德州大學之研究---------------------------------------------86
第三章 研發新的檢測技術之可行性探討----------------------------------------87
3.1 以岩相技術鑑識台灣東部地區安山岩之可行性探討----------------------87
3.1.1 安山岩的形成及礦物組成特性--------------------------------------------87
3.1.2 台灣主要安山岩之分佈與岩性--------------------------------------------88
3.1.3 台灣地區安山岩鹼質與粒料反應研究文獻摘要-----------------------89
3.1.3.1 安山岩具鹼質與粒料反應潛勢之礦物組成------------------------89
3.1.3.2 國內安山岩之鹼質與粒料反應相關研究---------------------------89
3.1.4 以岩相技術鑑識台灣東部地區安山岩之可行性-----------------------91
3.2 砂漿棒及混凝土角柱置於中國蒸壓法環境(CECS 48:93)以鑑
別粒料活性之可行性探討-------------------------------------------------------92
3.2.1 各國運用蒸壓方法評估鹼質與粒料反應問題研究與規範-----------92
3.2.1.1 中國之蒸壓方法研究與規範------------------------------------------92
3.2.1.2 日本之蒸壓方法研究與規範------------------------------------------93
3.2.1.3 法國之蒸壓方法研究與規範------------------------------------------94
3.2.1.4 加拿大之蒸壓方法研究------------------------------------------------94
3.2.2 影響蒸壓法試驗結果之因素探討-----------------------------------------95
3.2.3 砂漿棒及混凝土角柱置於中國蒸壓環境以鑑別粒料活性之
可行性------------------------------------------------------------------------101
3.3 混凝土角柱置於ASTM C1260環境以鑑別粒料活性之可行性探討----102
3.3.1 AAR之測長加速試驗法發展----------------------------------------------102
3.3.1.1 Chatterji法----------------------------------------------------------------102
3.3.1.2 ASTM C1260法---------------------------------------------------------103
3.3.1.3 混凝土角柱模擬ASTM C1260環境之研究-----------------------104
3.3.2 混凝土角柱置於ASTM C1260環境以鑑別粒料活性之可行性-----105
第四章 試驗規劃--------------------------------------------------------------------106
4.1 試驗計畫---------------------------------------------------------------------------106
4.1.1 粒料取樣---------------------------------------------------------------------106
4.1.2 試驗方法及試驗流程------------------------------------------------------107
4.2 試驗材料---------------------------------------------------------------------------112
4.3 試驗器材---------------------------------------------------------------------------113
4.4 試驗步驟---------------------------------------------------------------------------114
第五章 單一試驗結果--------------------------------------------------------------124
5.1 初期實驗---------------------------------------------------------------------------124
5.2 化學法------------------------------------------------------------------------------129
5.3 XRD結晶指數分析--------------------------------------------------------------133
5.4 岩相分析---------------------------------------------------------------------------139
5.4.1 XRD礦物成分分析----------------------------------------------------------139
5.4.2 偏光顯微鏡觀察-------------------------------------------------------------161
5.5 傳統測長試驗法------------------------------------------------------------------182
5.5.1 ASTM C227水泥砂漿棒試驗法-----------------------------------------182
5.5.2 ASTM C1293混凝土角柱試驗法----------------------------------------186
5.6 ASTM C1260快速水泥砂漿棒試驗法--------------------------------------188
5.7 蒸壓法------------------------------------------------------------------------------194
5.7.1 中國蒸壓法(CECS 48:93)--------------------------------------------------194
5.7.2 日本蒸壓法(JIS A1804)----------------------------------------------------195
5.8 新發展方法------------------------------------------------------------------------198
5.8.1 混凝土角柱模擬ASTM C1260環境試驗法(CP1260AT)------------198
5.8.2 水泥砂漿棒模擬中國蒸壓環境試驗法(MBAT)----------------------201
5.8.3 混凝土角柱模擬中國蒸壓環境試驗法(CPAT)----------------------201
第六章 現有規範鑑別台灣地區粒料活性之適用性--------------------------204
6.1 現有規範之試驗結果分析------------------------------------------------------204
6.2 現有規範試驗結果比較---------------------------------------------------------208
6.2.1 ASTM C289法與其他試驗方法之比較----------------------------------209
6.2.2 ASTM C1260法與其他試驗方法之比較--------------------------------219
6.2.2.1 兩種試驗相互比較----------------------------------------------------219
6.2.2.2 三種試驗彼此比較----------------------------------------------------230
6.2.3 ASTM C227法與其他試驗方法之比較----------------------------------234
6.2.4 ASTM C1293法與其他試驗方法之比較--------------------------------244
6.2.5 日本蒸壓法與其他試驗方法之比較-------------------------------------248
6.3 現有規範作為台灣地區活性粒料檢測方法探討---------------------------251
6.3.1 適用性探討-------------------------------------------------------------------251
6.3.2 判定標準檢討----------------------------------------------------------------255
第七章 以岩相分析技術鑑識台灣東部地區安山岩活性之差異性研究--261
7.1 鹼質與粒料反應活性試驗結果------------------------------------------------264
7.1.1 各粒料活性試驗結果-------------------------------------------------------264
7.1.2 取樣之安山岩鹼質與粒料反應活性-------------------------------------265
7.2 岩相分析結果---------------------------------------------------------------------266
7.2.1 偏光顯微鏡觀察-------------------------------------------------------------266
7.2.2 X光繞射礦物成份分析-----------------------------------------------------268
7.3 討論---------------------------------------------------------------------------------269
7.3.1 搭配運用偏光顯微鏡觀察及X光繞射分析對判斷安山岩活
性之重要性------------------------------------------------------------------269
7.3.2 安山岩之岩相分析與鹼質與粒料反應活性關係----------------------270
第八章 利用混凝土角柱模擬ASTM C1260環境試驗法評估台灣
地區AAR之適用性--------------------------------------------------------273
8.1 執行構想---------------------------------------------------------------------------273
8.2 試驗結果---------------------------------------------------------------------------274
8.3 粒料活性評估---------------------------------------------------------------------275
8.4 ASTM C1260法適用性檢討-----------------------------------------------------275
8.5 CP1260AT法之適用性探討-----------------------------------------------------277
8.5.1 膨脹行為---------------------------------------------------------------------277
8.5.2 試驗齡期、判定標準及運用建議檢討-----------------------------------279
8.5.3 CP1260AT法與ASTM C227法比較---------------------------------------280
8.5.4 CP1260AT法與ASTM C289法比較---------------------------------------282
8.5.5 CP1260AT法與其它試驗結果比較---------------------------------------283
第九章 利用砂漿棒快速蒸壓法評估台灣地區AAR之適用性--------------286
9.1 執行構想---------------------------------------------------------------------------286
9.2 試驗結果---------------------------------------------------------------------------286
9.3 粒料活性評估---------------------------------------------------------------------287
9.4 蒸壓方法評估台灣地區粒料AAR問題之適用性探討---------------------288
9.4.1 CECS 48:93(APNOR P18-588)試驗法之適用性-----------------------288
9.4.2 MBAT法之適用性評估-----------------------------------------------------288
第十章 利用混凝土角柱快速蒸壓法評估台灣地區AAR之適用性--------295
10.1 執行構想--------------------------------------------------------------------------295
10.2 試驗結果--------------------------------------------------------------------------295
10.3 粒料活性評估-------------------------------------------------------------------296
10.4 蒸壓方法評估台灣地區粒料AAR問題之適用性探討-------------------296
10.4.1 JIS A1804試驗法之適用性-----------------------------------------------297
10.4.2 CPAT法之適用性評估----------------------------------------------------297
第十一章 綜合討論-----------------------------------------------------------------302
11.1 岩相分析----------------------------------------------------------------------302
11.2 現有規範試驗方法----------------------------------------------------------302
11.3 新發展之試驗方法----------------------------------------------------------304
11.4 微觀分析結果----------------------------------------------------------------305
11.5 各試驗方法之綜合評估---------------------------------------------------310
11.6 適合於台灣地區活性粒料檢測方法與判定標準探討--------------------311
11.6.1 岩相分析--------------------------------------------------------------------311
11.6.2 化學法-----------------------------------------------------------------------311
11.6.3 測長法-----------------------------------------------------------------------311
11.6.4 蒸壓法(CPAT)-------------------------------------------------------------312
11.6.5 本文研究成果應用於判定混合料活性之適用性--------------------312
11.7 建議台灣地區活性粒料之檢測方法及運用--------------------------------313
第十二章 結論與建議-------------------------------------------------------------316
12.1 結論--------------------------------------------------------------------------------316
12.2 建議--------------------------------------------------------------------------------319
參考文獻--------------------------------------------------------------------------------320
圖目錄
圖2.1 矽四面體(矽石)---------------------------------------------------------------7
圖2.2 石英結晶結構(SiO2)------------------------------------------------------------7
圖2.3 矽石含量對ASR膨脹之影響(重製示意圖)--------------------------------8
圖2.4 鹼質與粒料反應流程圖-------------------------------------------------------12
圖2.5 混凝土鋪面鹼質與粒料反應裂縫模式----------------------------------------17
圖2.6 裂縫焦點中心-------------------------------------------------------------------18
圖2.7 混凝土外部滲出物-------------------------------------------------------------18
圖2.8 鋼筋混凝土構造物ASR龜裂情形--------------------------------------------19
圖2.9 混凝土發生鹼粒料反應的內部徵狀----------------------------------------20
圖2.10 石英在68 ˚附近不同位置的五個繞射峯值--------------------------38
圖2.11 Nagoya附近的燧石以其CI值和ASTM C289化學法所得的相關
位置及評估(重製示意圖)----------------------------------------------------39
圖2.12 ASTM C227砂漿棒法中含鹼量對膨脹量之影響(重製示意圖)----43
圖2.13 ASTM C1260與ASTM C1293結果比較(重製示意圖)----------------46
圖2.14 四象限法評估二試驗方法示意圖------------------------------------------47
圖2.15 碳酸岩AMBT及CPT膨脹試驗相關圖(重製示意圖)-------------------48
圖2.16 陸源沉積岩AMBT及CPT膨脹試驗相關圖(重製示意圖)-------------49
圖2.17 火成岩及變質岩AMBT及CPT膨脹試驗相關圖(重製示意圖)-------49
圖2.18 AASHTO T303膨脹量與ASTM C289結果比較(重製示意圖)------53
圖2.19 ASTM C227與AMBT試驗結果比較(重製示意圖)---------------------54
圖2.20 CPT試驗結果(重製示意圖)-------------------------------------------------54
圖2.21 國內鹼質與粒料反應疑似案例照片---------------------------------------56
圖2.22 民國89年台灣地區水泥含鹼量調查---------------------------------------57
圖2.23 台灣地質分區------------------------------------------------------------------62
圖2.24 台灣岩石分布圖---------------------------------------------------------------64
圖2.25 澳大利亞降低AAR危害綱要流程------------------------------------------71
圖2.26 使用於評估粒料活性試驗流程圖------------------------------------------75
圖2.27 決定混凝土粒料鹼質與粒料反應活性潛勢流程圖---------------------79
圖2.28 粒料活性全面性調查計畫---------------------------------------------------80
圖2.29 PCA判定粒料活性試驗流程------------------------------------------------85
圖2.30 德州大學研究之判定鹼質與粒料反應活性流程圖---------------------86
圖3.1 台灣地區安山岩鹼質與粒料反應研究判定結果-------------------------91
圖4.1 台灣地區活性粒料之檢測方法研究流程圖------------------------------110
圖4.1(續) 台灣地區活性粒料之檢測方法研究流程圖-------------------------111
圖4.2 ASTM C289法試驗及鑑定粒料活性流程圖------------------------------115
圖4.3 ASTM C227法試驗及鑑定粒料活性流程圖------------------------------116
圖4.4 ASTM C1260法試驗及鑑定粒料活性流程圖----------------------------117
圖4.5 ASTM C1293法試驗及鑑定粒料活性流程圖----------------------------118
圖4.6 中國蒸壓法試驗及鑑定粒料活性流程圖---------------------------------119
圖4.7 日本蒸壓法試驗及鑑定粒料活性流程圖---------------------------------120
圖4.8 ASTM C295法試驗及鑑定粒料活性流程圖-----------------------------121
圖5.1 初期試驗各試驗配比28天圓柱試體抗壓強度---------------------------127
圖5.2 初期實驗混凝土角柱模擬ASTM C1293環境試體長度變化----------127
圖5.3 初期實驗混凝土角柱模擬ASTM C1260環境試體長度變化----------128
圖5.4 ASTM C289「粒料之潛在鹼質與二氧化矽反應」試驗結果--------132
圖5.5 安山岩類 2θ67~69度X光繞射分析--------------------------------------135
圖5.6 石英脈、砂岩及變質砂岩類 2θ67~69度X光繞射分析--------------136
圖5.7 矽質片岩及黑色片岩類 2θ67~69度X光繞射分析--------------------137
圖5.8 綠色片岩及大理岩類 2θ67~69度X光繞射分析-----------------------138
圖5.9 安山岩類 2θ5~60度X光繞射分析----------------------------------------143
圖5.10 石英脈類 2θ5~60度X光繞射分析--------------------------------------144
圖5.11 砂岩及變質砂岩類 2θ5~60度X光繞射分析--------------------------145
圖5.12 矽質片岩類 2θ5~60度X光繞射分析-----------------------------------146
圖5.13 黑色片岩類 2θ5~60度X光繞射分析-----------------------------------147
圖5.14 綠色片岩類 2θ5~60度X光繞射分析-----------------------------------148
圖5.15 石灰岩及大理岩類 2θ5~60度X光繞射分析--------------------------149
圖5.16 各岩石間所含膨潤石(Smectite)之相對比值------------------------150
圖5.17 各岩石間所含伊利石(Illite)和雲母族(Micas)之相對比值-----------151
圖5.18 各岩石間所含閃石(類) (Amphiboles)之相對比值---------------------152
圖5.19 各岩石間所含綠泥石(Chlorite)之相對比值-----------------------------153
圖5.20 各岩石間所含方矽石(Cristobalite, low)之相對比值-------------------154
圖5.21 各岩石間所含石英(Quartz, low)之相對比值---------------------------155
圖5.22 各岩石間所含斜長石(Plagioclase)之相對比值-------------------------156
圖5.23 各岩石間所含鈉長石(Albite)之相對比值-------------------------------157
圖5.24 各岩石間所含方解石(Calcite)之相對比值------------------------------158
圖5.25 各岩石間所含輝石(Augite)之相對比值---------------------------------159
圖5.26 各岩石間所含白雲石(Dolomite)之相對比值---------------------------160
圖5.27 東河紅色安山岩偏光顯微鏡照片----------------------------------------164
圖5.28 東河綠色安山岩偏光顯微鏡照片----------------------------------------165
圖5.29 東河黃色安山岩偏光顯微鏡照片----------------------------------------166
圖5.30 東河變質砂岩偏光顯微鏡照片-------------------------------------------167
圖5.31 石梯坪紅色安山岩偏光顯微鏡照片-------------------------------------168
圖5.32 石梯坪綠色安山岩偏光顯微鏡照片-------------------------------------169
圖5.33 石梯坪黃色安山岩偏光顯微鏡照片-------------------------------------170
圖5.34 三仙台紅色安山岩偏光顯微鏡照片-------------------------------------171
圖5.35 三仙台綠色安山岩偏光顯微鏡照片-------------------------------------172
圖5.36 花蓮溪安山岩偏光顯微鏡照片-------------------------------------------173
圖5.37 花蓮溪變質砂岩偏光顯微鏡照片----------------------------------------174
圖5.38 頭前溪砂岩偏光顯微鏡照片----------------------------------------------175
圖5.39 木瓜溪變質砂岩偏光顯微鏡照片----------------------------------------176
圖5.40 卑南溪變質砂岩偏光顯微鏡照片----------------------------------------177
圖5.41 ASTM C227水泥砂漿棒試驗膨脹量變化--------------------------------185
圖5.42 ASTM C227試驗三個月與六個月膨脹量之比較-----------------------185
圖5.43 ASTM C1293混凝土角柱試驗膨脹量變化------------------------------188
圖5.44 ASTM C1260快速砂漿棒試驗膨脹量變化------------------------------191
圖5.45 安山岩類、東河變質砂岩及混合料之ASTM C227、蒸壓法
及C1260試驗後試體相片---------------------------------------------------192
圖5.45(續) 安山岩類、東河變質砂岩及混合料之ASTM C227、
蒸壓法及C1260試驗後試體相片------------------------------------193~194
圖5.46 中國蒸壓法試驗結果-------------------------------------------------------195
圖5.47 日本蒸壓試驗試體膨脹量-------------------------------------------------197
圖5.48 日本蒸壓試驗試體超音波殘留量----------------------------------------197
圖5.49 混凝土角柱模擬ASTM C1260環境試驗膨脹量變化-----------------200
圖5.50 水泥砂漿棒模擬中國蒸壓法試驗結果----------------------------------203
圖5.51 混凝土角柱模擬中國蒸壓法試驗結果----------------------------------203
圖6.1 象限座標法運用於試驗方法比較之象限定義--------------------------208
圖6.2 ASTM C289與 C1260試驗結果比較-------------------------------------212
圖6.3 ASTM C289與 C227(3個月)試驗結果比較-----------------------------213
圖6.4 ASTM C289與 C227(6個月)試驗結果比較-----------------------------214
圖6.5 ASTM C289與 C1293試驗結果比較-------------------------------------215
圖6.6 ASTM C289與中國蒸壓法試驗結果比較--------------------------------216
圖6.7 ASTM C289與日本蒸壓法試驗結果比較--------------------------------217
圖6.8 ASTM C289與 CI值分析試驗結果比較----------------------------------218
圖6.9 ASTM C1260與 C227(3個月)試驗結果比較----------------------------223
圖6.10 ASTM C1260與 C227(6個月)試驗結果比較---------------------------224
圖6.11 ASTM C1260與 C1293試驗結果比較-----------------------------------225
圖6.12 ASTM C1260與中國蒸壓法試驗結果比較-----------------------------226
圖6.13 ASTM C1260與日本蒸壓法(膨脹量)試驗結果比較--------------227
圖6.14 ASTM C1260與日本蒸壓法(超音波)試驗結果比較--------------228
圖6.15 ASTM C1260與CI值分析試驗結果比較--------------------------------229
圖6.16 ASTM C1260、C227(3個月)與C289試驗結果比較-------------------232
圖6.17 ASTM C1260、C227(6個月)與C289試驗結果比較-------------------232
圖6.18 ASTM C1260、C1293與C289試驗結果比較---------------------------233
圖6.19 ASTM C1260、日本蒸壓法(膨脹量)與C289試驗結果比較---------233
圖6.20 ASTM C227(3個月)與 C1293試驗結果比較---------------------------238
圖6.21 ASTM C227(6個月)與 C1293試驗結果比較---------------------------239
圖6.22 ASTM C227(3個月)與日本蒸壓法膨脹量試驗結果比較------------240
圖6.23 ASTM C227(6個月)與日本蒸壓法膨脹量試驗結果比較------------241
圖6.24 ASTM C227(3個月)與CI值分析結果比較------------------------------242
圖6.25 ASTM C227(6個月)與CI值分析結果比較------------------------------243
圖6.26 ASTM C1293與日本蒸壓法膨脹量試驗結果比較--------------------246
圖6.27 ASTM C1293與CI值分析結果比較--------------------------------------247
圖6.28 日本蒸壓法膨量量與CI值結果比較-------------------------------------250
圖6.29 ASTM C1260、C227、C289及C1293試驗結果綜合比較-----------254
圖6.30 ASTM C1260與ASTM C1293試驗方法比較---------------------------256
圖6.31 日本蒸壓法膨脹量與ASTM C1293試驗方法比較--------------------260
圖7.1 進行岩相分析之安山岩------------------------------------------------------262
圖8.1 ASTM C1260法與ASTM C1293法試驗結果比較-----------------------276
圖8.2 CP1260AT法1個月膨脹量與ASTM C1293法1年膨脹量比較---------278
圖8.3 CP1260AT法3個月膨脹量與ASTM C1293法1年膨脹量比較---------278
圖8.4 CP1260AT法各試驗齡期與ASTM C1293法1年膨脹量趨勢線
相關因子比較-----------------------------------------------------------------279
圖8.5 CP1260AT法與ASTM C227試驗結果比較-------------------------------281
圖8.6 CP1260AT法與ASTM C289試驗結果比較-------------------------------282
圖9.1 MBAT法與CECS 48:93法試驗試體膨脹量比較-----------------------289
圖9.2 MBAT法與ASTM C1293試驗結果比較及建議之判定標準檢討-----290
圖9.3 MBAT法與ASTM C227試驗結果比較------------------------------------291
圖9.4 MBAT法與ASTM C289試驗結果比較------------------------------------292
圖9.5 MBAT法暫行判定標準建議值之檢核-------------------------------------294
圖10.1 CPAT法與ASTM C1293試驗結果比較----------------------------------297
圖10.2 CPAT法試驗結果暫行判定標準檢討------------------------------------298
圖11.1 東河黃色安山岩及變質砂岩進行ASTM C1260試驗之試體
SEM(EDS)圖形---------------------------------------------------------------306
圖11.2 東河黃色安山岩及變質砂岩進行砂漿棒模擬中國蒸壓法
試驗之試體SEM(EDS)圖形------------------------------------------------308
圖11.3 建議新建工程申請之鹼質與粒料反應問題檢核及要求流程圖----315
表目錄
表2.1 具鹼質與粒料反應潛勢之礦物及岩種〔CSA 1994a〕-------------------9
表2.2 各國鹼質與粒料反應試驗法-------------------------------------------------29
表2.3 各國砂漿棒法比較(檢測ASR)------------------------------------------------31
表2.4 各國混凝土角柱試驗法比較(檢測ASR)--------------------------------32
表2.5 混凝土角柱試驗法(檢測ACR)--------------------------------------------32
表2.6 各國快速砂漿棒法比較(檢測ASR)------------------------------------------34
表2.7 各國蒸壓法比較(檢測ASR)---------------------------------------------------35
表2.8 化學法(適用於評估非活性粒料)--------------------------------------------36
表2.9 RILEM調查結果----------------------------------------------------------------40
表2.10 SINTEF及CANMET之AMBT參數比較----------------------------------50
表2.11 SINTEF及CANMET之CPT參數比較--------------------------------------51
表2.12 ABMT和CPT在SINTEF 及CANMET的試驗結果比較---------------51
表2.13 68種粒料AASHTO T303及ASTM C289試驗結果----------------------52
表2.14 國內各河川粒料活性鑑定結果---------------------------------------------58
表2.15 台灣地區單一岩種活性鑑定結果------------------------------------------59
表2.16 國內各河川岩種研究一覽表------------------------------------------------66
表2.17 木瓜溪等河川及地區岩石採集結果---------------------------------------68
表2.18 混凝土最大含鹼量限制------------------------------------------------------69
表2.19 Bérubé鹼質與粒料反應檢測法之建議程序與限制---------------------78
表2.20 Mid-Atlantic RTC建議之檢測及判定標準--------------------------------82
表2.21 Mid-Atlantic RTC建議之有效抑制AAR材料及方法------------------82
表2.22 AASHTO ASR Lead State Team建議之試驗程序及判定標準---------83
表2.23 AASHTO ASR Lead State Team建議之有效抑制AAR材料及方法---84
表3.1 台灣主要安山岩之分佈與岩性----------------------------------------------88
表4.1 水泥成份檢測報告------------------------------------------------------------112
表5.1 初期試驗圓柱試體28天抗壓強度------------------------------------------126
表5.2 ASTM C289試驗結果---------------------------------------------------------130
表5.3 XRD結晶指數CI值------------------------------------------------------------134
表5.4 岩石所含礦物組成------------------------------------------------------------141
表5.5 進行偏光顯微鏡分析岩種項目表------------------------------------------161
表5.6 偏光顯微鏡觀察結果綜合表------------------------------------------------178
表5.7 ASTM C227水泥砂漿棒試驗結果-----------------------------------------184
表5.8 ASTM C1293混凝土角柱試驗結果----------------------------------------187
表5.9 ASTM C1260快速砂漿棒試驗結果----------------------------------------190
表5.10 中國蒸壓法試驗結果-------------------------------------------------------194
表5.11 日本蒸壓法試驗結果-------------------------------------------------------196
表5.12 混凝土角柱模擬ASTM C1260環境試驗膨脹量變化-----------------199
表5.13 砂漿棒及混凝土角柱模擬中國蒸壓法試驗結果----------------------202
表6.1 現有規範判定為活性粒料結果--------------------------------------------205
表6.2 「台灣地區活性粒料之檢測方法研究」試驗結果一覽表-----------206
表6.3 ASTM C289法與其他現有規範相互比對結果符合數-----------------211
表6.4 ASTM C289法與其他現有規範相互比對結果符合率-----------------211
表6.5 ASTM C1260法與其他現有規範相互比對結果符合數---------------222
表6.6 ASTM C1260法與其他現有規範相互比對結果符合率---------------222
表6.7 ASTM C227(3個月)法與其他現有規範相互比對結果符合數-------236
表6.8 ASTM C227(3個月)法與其他現有規範相互比對結果符合率-------236
表6.9 ASTM C227(6個月)法與其他現有規範相互比對結果符合數-------237
表6.10 ASTM C227(6個月)法與其他現有規範相互比對結果符合率------237
表6.11 ASTM C1293法與其他現有規範相互比對結果符合數--------------245
表6.12 ASTM C1293法與其他現有規範相互比對結果符合率---------------245
表6.13 日本蒸壓法與其他現有規範相互比對結果符合數--------------------249
表6.14 日本蒸壓法與其他現有規範相互比對結果符合率--------------------249
表6.15 ASTM C1260修正判定標準後與ASTM C1293結果比較------------257
表6.16 日本蒸壓法修正判定標準後與ASTM C1293結果比較--------------259
表7.1 岩相分析及鹼質與粒料反應活性之試驗結果---------------------------263
表7.2 安山岩之低溫方矽石相對含量比較---------------------------------------269
表8.1 各試驗方法的試驗結果與粒料活性判定---------------------------------274
表8.2 ASTM C1260修正判定標準後與ASTM C1293結果比較--------------277
表8.3 CP1260AT法與ASTM C1293判定結果比較------------------------------280
表8.4 CP1260AT法與ASTM C227判定結果比較-------------------------------281
表8.5 CP1260AT法與ASTM C289判定結果比較-------------------------------283
表8.6 CP1260AT法與與其他現有規範相互比對結果符合數-----------------284
表8.7 CP1260AT法與與其他現有規範相互比對結果符合率-----------------285
表9.1 各試驗方法的試驗結果與粒料活性判定---------------------------------287
表9.2 MBAT法與ASTM C1293法判定結果比較--------------------------------290
表9.3 MBAT法與ASTM C227法判定結果比較---------------------------------292
表9.4 MBAT法與ASTM C289法判定結果比較---------------------------------293
表10.1 各試驗方法的試驗結果與粒料活性判定-------------------------------296
表10.2 CPAT法與ASTM C1293判定結果比較----------------------------------299
表10.3 CPAT法與其他現有規範相互比對結果符合數------------------------300
表10.4 CPAT法與其他現有規範相互比對結果符合率------------------------301
表11.1 各試驗方法之綜合評估-----------------------------------------------------310
參考文獻 參考文獻
1.Stanton, T.E., “Influence of Cement and Aggregate on Concrete Expansion,” Engineering News-Record, pp.59-61, 124 Feb., 1940.
2.Swamy, R.N., “The Alkali-Silica Reaction in Concrete,” Van Nostrand Reinhold, New York, 1992.
3.許書王,「台灣地區鹼質與粒料反應抑制策略之研究」,博士論文,國立中央大學土木工程研究所,中壢,1999年。
4.王淑慧,「台灣地區岩石之鹼-粒料反應潛能研究」,碩士論文,國立中央大學土木工程研究所,中壢 ,1999年。
5.李釗、饒正、張道光、陳桂清,「花蓮港區混凝土構造物鹼質與粒料反應之調查研究」,台灣省交通處港灣技術研究所,1998年。
6.李釗、許書王,「高雄港區混凝土構造物鹼質與粒料反應調查與潛勢分析研究」,交通部運輸研究所港灣技術研究中心期末報告,2000年。
7.柯正龍,「台中、基隆及蘇澳港港區混凝土構造物鹼質與粒料反應調查研究」,碩士論文,國立中央大學土木工程研究所,中壢,1999年。
8.陳仁達,「花東地區鹼-粒料反應及防治方法」,碩士論文,國立中央大學土木工程研究所,中壢 ,1999年。
9.巫柏蕙,「港灣混凝土構造物鹼質與粒料反應檢測方法評估研究」,碩士論文,國立中央大學土木工程研究所,中壢,2000年。
10.Gillott, J.E., “Alkali-aggregate reaction in concrete,” Engineering Geology, Vol.9, pp.303-326, 1975.
11.Stanton, T.E., “Expansion of Concrete Through Reaction Between Cement and Aggregate,” Transactions, American Society of Civil Engineers, Col. 107,pp. 54-126, 1942.
12.Touma, W.E., Fowler, D.W., and Carrasquillo, R.L., “Alkali-silica reaction in portland cement concrete: testing methods and mitigation alternatives,” Research Report ICAR 301-1F, 2001.
13.Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp.167-191, April 2000.
14.李釗、許書王、陳桂清,1996,「由破裂之消波塊探討鹼骨材反應」,台灣省政府交通處港灣技術研究所港灣報導。
15.Lee, C., “Available alkalis in fly and their effects on alkali-aggregate reaction,” Ph.D., Dissertation, Iowa State University, 1986.
16.李釗、許書王、陳桂清,「由破裂之消波塊探討鹼骨材反應」,港灣報導,pp.30-40,1996年10月。
17.Stark, D.C., “Lithium salt admixtures – an alternative method to prevent expansion alkali-silica reactivity,” Portland Cement Association, July 1992.
18.Hobbs, D.W., “Alkali-Silica Reaction in Concrete,” Thomas Telford, London, U.K., p.83, 1988.
19.蔣元駒、韓素方,『混凝土工程病害與修補加固』,海洋出版社,北京,中國,pp.365-406,1996年7月。
20.Standard Australia, “Alkali Aggregate Reaction – Guidelines on Minimizing the Risk of Damage to Concrete Structures in Australia,” p.20, 1996.
21.Hadley, D.W., “Alkali reactivity of carbonate rocks-expansion and dedolomitization,” Proceeding Highway Research Board, Vol.40, pp.462-474, 1961.
22.西林新藏,成功大學演講記錄,1993年3月。
23.Cole, W.F., Lancuk, C.J. and Sandy, M.J., “Products formed in an aged concrete,” Cement and Concrete Research, Vol.11, pp.443-454, 1981.
24.Van, A., J.H.P. and Visser, S., “Formation of hydrogarnets: calcium hydroxide attack on clays and feldspars,” Cement Concrete and Research, Vol.7, pp.39-44, 1977.
25.Van, A., J.H.P. and Visser, S., “Reaction of Ca(OH)2 and of Ca(OH)2 + CaSO4.2H2O at various temperatures with feldspars in aggregates in aggregate used for concrete making,” Cement Concrete and Research, Vol.8, pp.677-681, 1978.
26.Metha, P.K., “Concrete structure, properties, and materials,” pp.145-150, 1986.
27.Diamond, S., “A review of the alkali-aggregate reaction and expansion mechanism, alkali in cement and in concrete pore solutions,” Cement and Concrete Research, Vol. 5, pp.329-346, 1975.
28.Hobbs, D.W., “Expansion of concrete due to alkali-silica reaction,” The Structural Engineer, Cement, Concrete, and Aggregate, England, 1984.
29.Hill, E.D., “Alkali limits for prevention of alkali-silica reaction: a brief review of their development,” Cement, Concrete, and Aggregate, Vol. 18, No. 1, pp. 3-7, 1996.
30.Thomas, M.D.A., Hootn, R.D., and Rogers, C.A., “Prevention of damage due to alkali-aggregate reaction in concrete construction – Canadian approach,” Cement, Concrete, and Aggregates, Vol. 19, No. 1, pp. 26-30, 1997.
31.Gillott, J.E., and Rogers, C.A., “Alkali-aggregate reaction and internal release of alkalis,” Magazine of Concrete Research, pp.99-112, 1994.
32.Bérubé, M.A., Duchesne, J., and Rivest, M., “Alkali contribution by aggregates to concrete,” Proceedings of the 10th International Conference on Alkali-Aggregate Reaction in Concrete, Australia, pp.899-906, August 1996.
33.Duchesne, J., and Bérubé, M.A., “The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: Another look at the reaction mechanisms: Part 2: Pore solution chemistry,” Cement Concrete and Research, Vol.24, pp.221-231, 1994.
34.Diamond, S., “ASR-Another look at mechanisms,” Proceedings of the 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.83-94, August 1989.
35.Moore, A.E., “Effect of electric current on alkali-silica reaction,” Proceedings of the 4th International Conference on Effects of Alkalis in cement and concrete, Purdue University, pp.69-71, August 1978.
36.Ozol, M.A., “Alkali-silica reaction of concrete electrical substation piers accelerated by electrical currents,” Petrography applied to concrete aggregates, ASTM STP 1061, pp.106-120, 1990.
37.Shayan, A., “Combined Effects of AAR and Cathodic Protection Currents in Reinforced concrete,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec, Canada, pp.229-238 June 2000.
38.SHRP-C-343, “Eliminating or minimizing alkali-silica reactivity,” Strategic Highway Research Program, 1993.
39.Sibbick, R.G., and Page, C.L., “Mechanisms affecting the development of alkali-silica reaction in hardened concrete exposed to saline environments,” Magazine of Concrete Research, Vol. 50, No. 2, pp. 147-159, June 1998.
40.Nakano, K.I., Kibayashi, S., and Arimoto, Y., “Influence of reactive aggregate and alkali compounds on expansion of alkali-silica reaction,” Review of the 38th General Meeting, Japan, pp. 96-99, 1984.
41.British Cement Association, “The diagnosis of alkali-silica reaction-report of a working party,” pp.36, 1992.
42.Poole, A.B., “Introduction to alkali-aggregate reaction in the concrete,” Blackie, Glasgow and London, pp.1-29, 1992.
43.Lenzner, D., and Ludwig, V., “The alkali aggregate reaction with opaline sand stone from Schleswig-Holstein,” Proceedings of the 4th International Conference on Effects of Alkalis in cement and concrete, Purdue University, pp. 11-34, 1978.
44.Stark, D., and Depuy, G., “Alkali-silica reaction in five dams in southwestern United States,” In Proceedings of the Katharine and Bryant Mather International Conference on Concrete Durability, pp.1759-1786, April/May 1997.
45.Bérubé, M.A., Chouinard, D., Frenette, J., Boisvert, L., Pigeon, M., and Rivest, M., “Effectiveness of sealers in counteracting ASR in plain and air-entrained laboratory concretes exposed to wetting and drying, freezing and thawing, and salt water,” In supplementary Papers, 4th CANMET/ACI/JCI International Conference on Recent Advances in Concrete Technology, pp.375-396, June 1998.
46.Bérubé, M.A., Chouinard, D., Boisvert, L., Frenette, J., and Rivest, M., “Influence of wetting –drying and freezing-thawing cycles and effectiveness of sealers on ASR,” Proceedings of the 10th International Conference on Alkali-Aggregate Reaction in Concrete, Australia, pp.1056-1063, August 1996.
47.Bérubé, M.A., and Fournier, B., “Alkali-aggregate reaction in concrete,” Gordon & Breach Publisher, 2000.
48.Stark, D., “The moisture condition of field concrete exhibiting alkali-silica reactivity,” In Proceedings of the CANMET International Workshop on Alkali-Aggregate Reaction in Concrete, May 1990.
49.wamy, R.N.S, “Effects of alkali-aggregate reactivity on material stability and structural integrity,” Proceedings of the CANMET/ACI International Workshop on Alkali-Aggregate Reaction in Concrete, pp.233-241, October 1995.
50.Bérubé, M.A., and Fournier, B., “Canadian Experience with Testing for Alkali-Aggregate Reactivity in Concrete,” Cement and Concrete Composites, Vol. 15, pp. 27-47, 1993
51.ASTM C227-97, ”Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
52.ASTM C1260-94, ”Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
53.ASTM C1293-95, “Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete Due to Alkali-Silica Reaction,” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
54.ASTM C289-94, “Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
55.ASTM C295-90, “Standard Guide for Petrographic Examination of Aggregates for Concrete,” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
56.”Testing Aggregate – Part 123: Method for determination of alkali-silica reactivity – Concrete prism method,” BS 812-123, 1999.
57.”Testing Aggregate – Method for the assessment of alkali-silica reactivity – Potential accelerated mortar-bar method,” BS 249, 1999.
58.”Guide to the interpretation of petrographical examinations for alkali-silica reactivity,” BS 7943, 1999.
59.”Potential Expansivity of Aggregate (Procedure for Length Change Due to Alkali-Aggregate Reaction in Concrete Prism),” CSA A23.2-14A, 1999.
60.”Test Method for Detection of Alkali-Silica Reactive Aggregate by Accelerated Expansion of Mortar Bar,” CSA A23.2-25A, 1999.
61.”Rapid Identification of Alkali Silica Reaction Product in Concrete,” AASHTO T299-93.
62.”Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars Due to Alkali-Silica Reaction,” AASHTO T303-96.
63.Guirguis, S., and Clarke, P., “Alkali Aggregate Reactivity – Towards Standard Test Methods,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec, Canada, pp.653-662, 2000.
64.Stark, D., “Handbook for the Identification of Alkali-Silica Reactivity in Highway Structures,” SHRP, Washington, DC, 1991.
65.Guthrie, J., George, D., and Carey, J.W., “A Simple Environmentally Friendly, and Chemically Specific Method for the Identification and Evaluation of the Alkali-Silica Reaction,” Cement and Concrete Research, V.27, pp.1407-1417, 1997.
66.Murata, K.J., and Norman, M.B., “An Index of Cry-Stallinity for Quartz,” American Journal of Science, Vol.276, pp.1120-1130, 1976.
67.Morino, K., “Alkali-Aggregate Reactivity of Cherty Rock,” Proceedings of the 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.501-506, 1989.
68.Nixon, P., and Sims, I., “Testing Aggregates for Alkali-Reactivity: Report of RILEM TC-106,” Materials and Structures/Mateiaux et Construction, Vol. 29, July, pp.323-334, 1996.
69.Stark, D., Morgan, B., Okamoto, P., and Diamond, S., “Eliminating or Minimizing Alkali-Silica Reactivity,” SHRP-C-343, National Research Council, Washington DC, 1993.
70.Barisone, G., and Restive, G., “Alkali-Silica Reactivity of Some Italian Opal and Flints Tested Using a Modified Mortar Bar Test,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec, Canada, pp.239-246, 2000.
71.Grattan-Bellew, P.E., “Test Methods and Criteria for Evaluation the Potential Reactivity of aggregates,” Proceedings of the 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.279-294, 1989.
72.Glauz, D., and Jain, V., “California’s Experience with Reactive Aggregates,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec, Canada, pp.325-334, 2000.
73.Grosbois, D., and Fontaine, M., “Evaluation of The Potential Alkali-Reactivity of Concrete Aggregates:Performance of Testing Methods and A Producer,s Point of View,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec, Canada, pp.267-276, 2000.
74.Lane, D.S., “Alkali-Silica Reactivity in Virginia, USA:Occurences and Reactive Aggregates,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec, Canada, pp.385-394, 2000.
75.Grosbois, D., and Fontaine, E., “Performance of the 60℃-Accelerated Concrete Prism Test for the Evaluation of Potential Alkali-Reactivity of Concrete Aggregates,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec, Canada, pp.277-286, 2000.
76.Jensen, V., and Fournier, B., “Influence of Different Procedures on Accelerate Mortar Bar and Concrete Prism Tests:Assessment of Seven Norwegian,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec, Canada, pp.345-354, 2000.
77.褚炳麟,顏聰,盧俊寬,「台灣西部地區砂石粒料鹼質反應調查研究」,交通部台灣地區國道建設新建工程局研究報告,1994年。
78.楊世和,「台灣東部反應性粒料之探討及分析」,碩士論文,國立中央大學土木工程研究所,中壢 ,1997年。
79.王智興,「適合台灣地區鹼-粒料反應判斷圖之研究」,碩士論文,國立成功大學土木工程研究所,中壢,1999年。
80.林晏吉,「花東地區鹼-粒料反應之成因探討」,碩士論文,國立中央大學土木工程研究所,中壢,1999年。
81.蔡宗琳,「花蓮木瓜溪砂適當量的研究」,碩士論文,國立成功大學土木工程研究所,台南,1997年。
82.彭柏翰,「花蓮溪安山岩含量之悲極效應研究」,碩士論文,國立中央大學土木工程研究所,中壢,2000年。
83.何春蓀,「台灣地質概論」,1997年。
84.張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」,碩士論文,國立中央大學土木工程研究所,中壢,2000年。
85.「砂石採取整體管理改善計畫書」,經濟部水利處,1999年。
86.「研究區域內料源所在地進行粒料物性調查分析」,交通部公路局,2000年
87.Tang, M.S., Deng, M, Xu, Z., Lan X., and Han S., “Alkali-Aggregate Reaction in China,” Proceedings of the 10th International Conference on Alkali-Aggregate Reaction in Concrete, Australia, pp.195-201, 1996.
88.Shayan, A., Diggings, R. and Ivanusec, I., “Effectiveness of Fly Ash in Preventing Deleterious Expansion Due to Alkali-Aggregate Reaction in Normal and Steam-Cured Concrete,” Cement and Concrete Research, Vol.26, No.1, pp.153-164, 1996.
89.S. Guirguis, and P. Clarke, “Alkali aggregate reactivity-towards standard test methods,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec, Canada, pp. 653-662, 2000.
90.Thomas, M.D.A., Blackwell, B.Q., and Nixon, P.J., “Estimating the Alkali Contribution from Fly Ash to Expansion Due to Alkali-Aggregate Reaction in Concrete,” Magazine of Concrete Research, Vol.48, No.177, pp.252-263, 1996.
91.Jensen, V., “Present Experience with Aggregate Testing in Norway,” Proceedings of the 10th International Conference of Alkali-Aggregate Reaction in Concrete, Australia, pp.133-141, 1996.
92.Bérubé, M.A., and Frenette, J., “Testing Concrete for AAR in NaOH and NaCl Solutions at 38℃ and 80℃,” Cement and Concrete Composites, Vol. 16, pp.207-218, 1994.
93.Rogers, C.A., “Alkali-Aggregate Reactivity in Canada,” Cement and Concrete Composites, Vol.15, pp.13-19, 1993.
94.http://leadstates.tamu.edu/ASR/library/gspec.stm.
95.陳文山,「岩石入門」,遠流出版公司,1997。
96.陳培源,「礦物種名與岩石名詞」,茂昌圖書有限公司,1999。
97.Streikeisen, A.L., “Classification and nomenclature of Volcanic Rocks and IUGS Subcommission on the Systematics of Igneous Rocks,” Geol. Rundsch, 69, pp.194-207, 1980.
98.陳正宏,「台灣之火成岩」,經濟部中央地質調查所,第2頁,1990。
99.莊文星,「台灣之火山活動與火成岩」,圖立自然科學博物管,1999。
100.CSA. 1994a. Appendix B-Alkali-aggregate reaction, “CSA A23.2-4-concrete materials and methods of concrete construction,” Canadian Standards Association, Toronto, Ont., 1994.
101.張郇生,「麥飯石探微-兼論膨潤石外形、特徵、及用途」,地質,經濟部中央地質調查所,第十九卷第一期,第68-88頁,1999。
102.Landgren, R., Sweet, S., “Investigation of durability of Wyoming aggregates,” Proc. Highway Res. Board 31, pp. 202-217, 1952.
103.Mielenz, R.C., “Petrographic examination of concrete aggregate,” Proceeding of American Society Test Material 54, pp.1188-1218, 1954.
104.Wakiaka, Y., “Alkali-silica reactivity of Japanese rocks,” Engineering Geology, 56, pp.211-221, 2000.
105.Katayama, T., Helgason, T.S., and Olafsson, H., “Petrography and alkali-reactivity of some volcanic aggregates from Iceland,” Proceedings of the 10th International Conference on Alkali-Aggregate Reaction in Concrete, Australia, pp.377-384, August 1996.
106.http://www.wra.gov.tw/2001/wr/riverm.asp, 2002.
107.「台灣地區陸上砂石分佈、品質、儲量與開發潛力研究」,經濟部,台北市,1987。
108.Tang, M.S., Han, S.F., and Zhen, S.H., “A rapid method for identification of alkali reactivity of aggregate,” Cement and Concrete Research, Vol.13, pp.417-422, 1983.
109.Tang, M.S, Lan, X.G., and Han, S.F., “Autoclave method for identification of alkali-reactive carbonate rock,” Cement and Concrete Composites, Vol.16, pp.163-167, 1994.
110.Hooton, R.D. and Rogers, C.A., “Evaluation of rapid of test methods for detecting alkali-reactive aggregates,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, KYOTO, pp.439-444, 1989.
111.Abe, M., Tomosawa, F., Mano, T. and Togasaki, K., “A study on the simple rapid test method used to judge the alkali reactivity of aggregate,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, KYOTO, pp.369-374, 1989.
112.Kanazu, T., Ohnuma, H., Nakano, T., and Ishida, H., “Study on the rapid estimation method of alkali aggregate reaction using concrete specimens,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, KYOTO, pp.375-380, 1989.
113.Nishibayashi, S., Kuroda, T., and Inoue, S., “Expansion characteristics of AAR in concrete by autoclave method,” Proceeding of the 10th International Conference on Alkali-Aggregate Reaction, Australia, pp.370-376, 1996.
114.Tamura, H., Takahashi, T., and Ohashi, M., “A test method on rapid identification of the future susceptibility of alkali-aggregate reaction in fresh concrete (Fresh-con GBRC rapid method),” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, KYOTO, pp.351-356, 1989.
115.Kishitani, K. and Kobayashi, M., “Development and standardization of a rapid test method for identification of the alkali reactivity of aggregates,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, KYOTO, pp.357-362, 1989.
116.Kishitani, K., Kobayashi, M., and Tamura, H., “The rapid test JIS A 1804,” Cement and Concrete Composites, Vol.16, pp.169-175, 1994.
117.Fournier, B., Bérubé, M.A., and Bergeron, G., “A rapid autoclave mortar bar method to determine the potential alkali-silica reactivity of St. Lawrence Lowlands Carbonate Aggregates (Quebec Canada),” Cement Concrete and Aggregates, CCAGDP, Vol.13, No.1, pp.58-71, 1991.
118.Nishbayashi, S., Yamura, K., and Matsushita, H., “A rapid method of determining the alkali-aggregate reaction in concrete by autoclave,” Proceeding of the 7th International Conference on Alkali-Aggregate Reaction, Ottawa, pp.299-303, 1987.
119.Tamura, H., “A test method on rapid identification of alkali reactive aggregate (GBRC Rapid Method),” Proceeding of the 7th International Conference on Alkali-Aggregate Reaction, Ottawa, pp.304-308, 1987.
120.Criaud, A., Defossé, C., Chabanis, B., Debray, L., Michel, B., Sorrentino, D., Gallias, M., Salomon, M., Guédon S., and Le Roux, A., “The French standard methods for evaluating the reactivity of aggregates with respect to AAR: Results of an Inter-laboratory Program,” Cement and Concrete Composites, Vol.16, pp.199-206, 1994.
121.CECS 48:93, “A rapid test method for determining the alkali reactivity of sands and rocks,” 中國工程建設標準化協會標準(CECS),1995.
122.JIS A 1804, “Methods of test for production control of concrete – Method of rapid test for identification of alkali reactivity of aggregate,” 2001.
123.AFNOR P 18-588, “Aggregates-dimensional stability test in alkali medium-accelerated mortar microbar test,” 12/1991.
124.AFNOR P 18-590, “Aggregates-dimensional stability test in alkali medium-accelerated mortar autoclave test,” 04/1993.
125.Chatterji, C., “An accelerated method for the detection of alkali-aggregate reaction of aggregate,” Cement and Concrete Research, Vol.8, pp.647-650, 1978.
126.CNS 1258 R3044,「卜特蘭水泥蒸壓膨脹試驗法」,經濟部標準檢驗局,1985。
127.Oberholster, R., and Davies, G., “An accelerated method for testing the potential reactivity of siliceous aggregates,” Cement and Concrete Research, Vol.16, pp.181-189, 1986.
128.Taguchi, T., Chatterji, S., and Kawamura, M., “A comparison of different methods of detection of alkali-silica reactivity of aggregates,” Cement and Concrete Research, Vol.23, pp.55-58, 1993.
129.Van Aardt, J.H.P., and Visser, S., Progress Report Part 2, CSIR Research Report BRR 577, Pretoria, 1982.
130.Shayan, A., Diggins, R.G., Ivanusec, I., and Westgate, P.L., “Accelerated testing of some Australian and overseas aggregates for alkali-aggregate reactivity,” Cement and Concrete Research, Vol.18, pp.843-851, 1988.
131.Shayan, A., “Experiment with accelerated tests for predicting alkali-aggregate reactivity,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, KYOTO, pp.321-326, 1989.
132.Fournier, B., and Bérubé, M.A., “Application of the NBRI accelerated mortar bar test to siliceous carbonate aggregates produced in the St. Lawrence Lowlands, PART 1: influence of various parameters on the test results,” Cement and Concrete Research, Vol.21, pp.853-862, 1991.
133.Shayan, A., “The pessimum effect in an accelerated mortar bar test using 1 M NaOH solution at 80 ℃,” Cement and Concrete Composites, Vol.14, pp.249-255, 1992.
134.Shayan, A, “Effects of NaOH and NaCl solutions and temperature on the behavior of specimens subjected to acceleration AAR test,” Cement and Concrete Research, Vol.28, pp.25-31, 1998.
135.Grattan-Bellew, P.E., “A critical review of ultra-accelerated tests for alkali-silica reactivity,” Cement and Concrete Composites, Vol.19, pp.403-414, 1997.
136.Hooton, R.D., and Rogers, C.A., “Development of the NBRI rapid mortar bar test leading to its use in North America,” Construction and Building Materials, Vol.7, pp.145-148, 1993.
137.Davies, G., and Oberholster, R.E., “Use of the NBRI acceleration test to evaluate the effectiveness of mineral admixtures in preventing the alkali-asilica reaction,” Cement and Concrete Research, Vol.17, pp.97-107, 1987.
138.Shayan, A., Diggins, R.G., Ivanusec, I., and Westgate, P.L., “Accelerated testing of some Australian and overseas aggregates for alkali-aggregate reactivity,” Cement and Concrete Research, Vol.18, pp.843-851, 1988.
139.呂學俊,「鑛物科學」,中國文化大學出版部,第293頁,1988。
140.黃怡楨,「礦物學」,地球科學文教基金會,第547-554頁。
指導教授 李釗(Chau Lee) 審核日期 2003-6-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明