參考文獻 |
[1] S. E. Miller, ”Integrated Optics : an introduction,” Bell. Syst.Tech.J.,48,p2059-2069(1969)
[2] M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, ”high-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser”, Appl. Phys. Lett.,83,p3659-3661(2003)
[3] Zhenhuan Ye, Qihong Lou, Jingxing Dong, Yunrong Wei, and Lei Lun, “compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide cystals”, Opt. Lett., 30, p.73(2005).
[4] D. A. Bryan, R. Gerson, and H. E. Tomasschke, “increased optical damage resistance in lithium niobate”, Appl. Phys. Lett.,44,p847-849(1984))
[5] R. G. Batchko, G. D. Miller, A. Alexandrovski et al., ”Limitations of high-power visible wavelength periodically poled Lithium Niobate devices due to green-induced infrared absorption and thermal lensing,” Conf. on Laser and Electro-Optics, Presentation CTuD6(Opt. Soc. Am., Washington D.C.,1998)
[6] Y. Furukawa, K. Kitamura, S. Takekawa, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett., 23, pp1892-1894(1998).
[7] Masaki Asobe, Osamu Tadanaga, Tsutomu Yanagawa, Hiroki Itoh, and Hiroyuki Suzuki, ”Reducing photorefractivr effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.,78,p3163-3165(2001)
[8] Y. C. Huang, ”principles of nonlinear optics”, course reader, national Tsinghua university,Taiwan(2002)
[9] Ming-Hsien Chou, “optical frequency mixers using three-wave mixing for optical fiber communications”(1999)
[10] M. M. Fejer, et al., IEEE J. Quantum Electron. Vol.28,p.2631(1992)
[11] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural Properties,” IEEE J. Quantum Electronics.,vol.2,pp187-196(1996)
[12] Vittorio M. N. Passaro,”LiNbO3 Optical Waveguides Formed in a New Proton Source,” J. Light. Tech.,vol.20,pp71-77(2002)
[13] Yu. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, and A. N. Alkaev “Proton-Exchanged Waveguides in MgO-doped LiNbO3: Optical and Structural Properties,” J. Appl. Phy.,vol.94,pp1163-1169(2003)
[14] L. Chanvillard, P.Aschieri, and P. Baldi, ”Soft Proton Exchange on periodically poled LiNbO3 : A Simple Waveguide Fabrication Process for Highly Efficient Nonlinear Interactions,” Appl. Phy. Vol76, pp1089-1091(2000)
[15] Yu. N. Korkishko, “LiNbO3 Optical Waveguide Fabrication by High-Temperature Proton Exchange,” J. Light. Tech.,vol.18,pp562-568(2000)
[16] Yu. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva, and T. V. Morozova, “Characterization of α-phase Soft Proton Exchanged LiNbO3 Optical Waveguides,” J. Opt. Soc. Am. A, vol.18,pp1186-1191(2001)
[17] D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, and Y. C. Haung, “Structure of Optical Characterization of Vapor-Phase Proton Exchanged LiNbO3 Waveguides,”Mater. Chem. And Phys.vol.78,pp474-479(2002)
[18] L. Rams and J. M. Cabrera, “Preparation of proton-exchange LiNbO3 Waveguides in Benzoic Acid Vapor,” J. Opt. Soc. Am. B, vol.16, pp401-406(1999)
[19]Yu. N. Korkishko, V. A. Fedorov, and T. M. Morozova, “Reverse Proton Exchange for Buried Waveguides in LiNbO3,” J. Opt. Soc. Am. B,vol.15,pp1838-1842(1998)
[20] Sandeep T. Vohra, Alan R. Mickelson, and Sally E. Asher, ”diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides”, J. Appl. Phys. Vol.66,p.5161-5174(1989)
[21] X. F. Cao et al., J. Light. Tech.,vol.10,pp1302(1992)
[22] David E. Zelmon and David L. Small, ”Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5mol.% magnesium oxide-doped lithium niobate” J. Opt. Soc. Am. B,vol.14,pp3319-3322(1997)
[23] http://www. yamatsu.com
[24] D. A. Bryan, Robert Gerson, H. E. Tomaschke, ”Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.,44,p847-849(1984)
[25] Y. Ishigame, T. Suhara, and H. Nishihara, ”LiNbO3 waveguide second-harmonic generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett., vol.16, p375-377(1991)
[26] J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of Laser diode light in a lithium niobate channel waveguide,” IEEE Photon Techonol.Lett.,vol.1,p316-318(1989)
[27] M. Yamada, N. Nada, M. Saitoh and K. Watanabe,”First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.,vol.62, p435-436(1993)
[28] Alan. C. G. Nutt, Venkatraman Gopalan, and Mool C. Gupta,”Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett.,vol.60, p2828-2830(1992)
[29] K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “electric-field poling in Mg-doped LiNbO3”, J. Appl. Phys.,vol.96,p6585-6590(2004)
[30] G. D. Miller” Periodically poled lithium niobate : modeling,fabrication,and nonlinear-optical performance”
[31] H.Ishizuki, I. Shoji, and T. Taira, ”Periodically poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.,vol.82, p4062-4064(2003)
[32]黃俊育,”主動式多通道窄頻寬通Ti:PPLN波導濾波以及模態轉換器之研究”中央大學碩士論文,DOP(2006)
[33] A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields” Appl. Phys. Lett.,vol.69,p1565-1567(1996)
[34] M. L. Bortz, and M. M. Fejer, “annealed proton-exchanged LiNbO3 waveguides”, Opt. Lett., 16, p.1844-1846(1991).
[35] R. Regener, and W. Sohler, ”loss in low-finesse Ti:LiNbO3 optical waveguide resonators ”, Appl. Phys. B,vol.36,p.143-147(1985) |