國立中央大學 105 學年度碩士班考試入學試題

所別: 電機工程學系碩士班 系統與生醫組(一般生)

共之頁 第一頁

科目: 信號與系統

本科考試禁用計算器

*請在答案卷(卡)內作答

- 1. How many signals have a Laplace transform that may be expressed as $\frac{(s-2)}{(s+5)(s^2+s-6)}$ in its region of convergence? (10%)
- 2. Find the frequency-domain representation for signal $x(t) = (e^{-3t}u(5t)) \times e^{-j2t} * \frac{d}{dt} \{ e^{-2t}u(t-4) \}$. (20%)
- 3. For a system h(t), the input $x(t) = e^{-3t}u(t)$ and the output $y(t) = e^{-t}u(2t)$. Determine the impulse response of its inverse system $h^{inv}(t)$. (10%)
- 4. Find the time-domain signal for the following frequency-domain representation. (10%)

5. For a discrete-time Fourier transform $X(e^{j\Omega}) = \frac{5e^{-j\Omega} + 3}{(1 + \frac{1}{4}e^{-j\Omega})(1 - \frac{1}{3}e^{-j\Omega})}$, where Ω represents the

frequency of discrete-time signal, please use inverse Fourier transform to find the discrete-time signal x[n]. (10%)

- 6. Considering a continuous-time signal $x_c(t) = \cos(15000\pi t)$, the signal is sampled by an analog-to-digital (A/D converter) with sampling interval T = 1/4500. Please answer the following questions:
- (a) Is aliasing happened in the sampled signal? (2%)
- (b) What is the sampled discrete-time signal x[n]? (8%)

注:背面有試題

國立中央大學 105 學年度碩士班考試入學試題

所別: 電機工程學系碩士班 系統與生醫組(一般生)

共之頁 第三頁

科目: 信號與系統

本科考試禁用計算器

*請在答案卷(卡)內作答

7. For a linear-time invariant (LTI) system h[n], the relation between discrete-time input signal x[n] and output signal y[n] is represented as follows:

$$y[n] = -3x[n] + 10x[n-1] + 3x[n-2].$$

Please answer the following question:

- (a) Please find the impulse response h[n] of the system. (5%)
- (b) For input signal $x[n] = 2\delta[n+1] 4\delta[n] + 5\delta[n-2]$, please find the output signal y[n] of the input signal. (5%)
- (c) Please find the Fourier transform $H(e^{j\Omega})$ of the impulse response h[n]. (5%)
- (d) Is the LTI system causal? (2%)
- (e) Is the LTI system stable? (3%)
- 8. Please prove the following discrete-time Fourier transform (DTFT) properties:

(a)
$$nx[n] \xrightarrow{DTFT} j \frac{dX(e^{j\Omega})}{d\Omega}$$
. (5%) (b) $\sum_{n=-\infty}^{\infty} |x[n]|^2 \xrightarrow{DTFT} \frac{1}{2\pi} \int_{\pi}^{\pi} |X(e^{j\Omega})|^2 d\Omega$. (5%)

***Remark**: n is the discrete-time index, Ω is the radial frequency, * is discrete-time convolution operator, and $X(e^{j\Omega})$ is the discrete-time Fourier transform of discrete-time sequences x[n], respectively.

注:背面有試題