博碩士論文 942206045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.149.237.231
姓名 傅思維(Szu-Wei Fu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 定光電流量測法在氫化矽薄膜特性的研究
(Research on the characterization of hydrogenated silicon thin film using constant photocurrent method)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於能源缺乏,再生能源很重要,而矽薄膜太陽能電池是再生能源中很重要的一個部份,所以在效率提昇上,有許多研究不斷的被提出來分析矽薄膜特性。其中矽薄膜的吸收係數影響材料的厚度與吸收陽光的頻譜,因此,吸收係數扮演了很重要的角色。由光學上的吸收可以得到很多矽薄膜特性的指標,像是光學能階 (optical bandgap)、矽薄膜膜質的散亂程度Urbach parameter、還有缺陷密度 (Defect density),缺陷密度的多寡在矽薄膜太陽能電池的效率提升扮演了很重要的角色。矽薄膜在不同波長的吸收大小,在波長小於能階的吸收可歸因於能階內的缺陷所造成的吸收,因此在波長小於能階的吸收特性分析上,顯示不同的物理特性,例如缺陷密度跟Urbach參數又格外的重要,因為缺陷的多寡影響到的是光產生出的電子電洞對效率,缺陷會去捕捉電子電洞對,相對的光生電的效率就會下降。一般而言,簡單的吸收係數可經過光譜儀的量測,再由反射係數與穿透係數來求得吸收係數,但是當吸收小於10-6時,一般的光譜儀便無法量到,需透過其他的儀器Constant Photocurrent Measurement (CPM), Photothermal Deflection Spectroscopy (PDS), and Dual Beam Photoconductivity (DBP)…之類的儀器來量測。本論文的主要架構就是在用CPM去量測弱吸收區的吸收係數,更進一步去得到缺陷密度。不管是PVD還是CVD在製程上都是用氫氣去填補缺陷密度,也就是懸浮鍵(Dangling-bonds),但是氫氣的多寡會影響到膜質的結構,也會影響到矽薄膜的傳導特性(Transport property);矽氫的鍵結可由紅外線的吸收來求得。非晶矽與微晶矽都是矽薄膜太陽能很重要的成分,由CPM可以得到收係數進而得知微晶矽跟非晶矽不同的光響應,對於製程的優化有很大的幫助。
摘要(英) Because lacks of energy, thin film silicon solar cell is an important part to renewable energy in the future, and it still needed to be improved by different methods. Lots of research was devoted to characterize thin film silicon. The absorption coefficient played an important role at thin film silicon solar cell based on Photovoltaics effects and can affect the material thickness and absorption spectrum. From optical absorption, we can get much information to characterize the quality of thin film silicon solar cell, which includes optical bandgap, Urbach parameter(disorder condition) and defect density. The defect density played an important role to optimize the quality of silicon thin film solar cell. The information of optical absorption coefficient not only shows the absorptance condition at different wavelength but also the absorption for the energy lower than bandgap, which indicates gap states information. The absorption in bandgap aroused much attention because absorptance below the band gap attributed to the defect states in the gap. The photo generated electron-hole pairs efficiency is influence by defect densities. The defect would trap electron-hole pairs and decrease photovoltaic effect. Generally speaking, the absorption coefficient can be easily measured by commercial spectroscopy and deconvoluted by transmission and reflection coefficient. However, for absorptance smaller than 10-6, it is not easy to measure absorption coefficient and needed to measure via other equipments such as Constant Photocurrent Measurement (CPM), Photothermal Deflection Spectroscopy (PDS), and Dual Beam Photoconductivity (DBP)…etc.. The main research of this thesis is to measure low absorption coefficient via CPM and calculate defect density. We usually passivate defect density which dominant of dangling bond by introduce hydrogen into chamber at CVD and PVD process. However, more hydrogen will affect the film structure and transport property. The silicon hydrogen bonding can be observed by IR absorption.
Above of all, amorphous and microcrystalline silicon thin film are much important in silicon thin film solar cell industry. We can vividly know the different optical response at amorphous and microcrystalline silicon by CPM measurement. And it is great helpful for us to optimize the process condition via the optical properties.
關鍵字(中) ★ 矽薄膜太陽能
★ 缺陷密度
★ 吸收係數
★ 光學能階
★ 弱吸收區
★ 散亂程度
關鍵字(英) ★ thin film silicon solar cell
★ Urbach slope
★ defect density
★ optical bandgap
★ subgap absorption
★ dangling bonds
★ disorder
★ CPM
論文目次 Contents...................................................................................................III
List of figures............................................................................................V
List of table...........................................................................................VIII
List of symbols and abbreviations........................................................IX
Chapter 1 Introduction.............................................................................1
1.1. Motivation....................................................................................1
1.1.1. the needs of Solar Photovoltaic (PV)...............................1
1.1.2. Semiconductor materials..................................................2
1.1.3. The role of silicon thin films in PV..................................5
1.2. Hydrogenated Silicon..................................................................8
1.2.1. Hydrogenated Amorphous Silicon..................................9
1.2.2. Hydrogenated Microcrystalline Silicon........................10
1.2.3. Deposition technique for hydrogenated silicon............11
1.3. Outline of Thesis.......................................................................12
Chapter 2 Characterization techniques................................................15
2.1. Raman Spectroscopy................................................................15
2.2. Electrical conductivity...........................................................18
2.2.1. Electrical dark conductivity...........................................18
2.2.2 Electrical Photoconductivity (σ)..................................19
2.2.3 Activation energy....................................................20
2.3. Illuminated current-voltage characteristics........................20
2.4. External Quantum efficiency................................................22
2.5. Optical Defect Spectroscopy.................................................24
2.5.1. Photothermal Deflection Spectroscopy(PDS)...............24
2.5.2. Constant photocurrent method (CPM).........................24
2.5.3. Electron spin resonance (ESR)......................................25
2.6. X-ray diffraction....................................................................26
2.7. Hydrogen content spectroscopy...........................................28
2.7.1. Infra-Red (IR) Spectroscopy..........................................28
2.7.2. Secondary Ion Mass Spectrometry(SIMS)...................30
2.8. Ellipsometer............................................................................31
Chapter 3 Theory and Experiments......................................................33
3.1 Optical properties of Hydrogenated silicon film................33
3.1.1. Models for the density of states......................................33
3.1.2. Optical Properties...........................................................35
3.2. Theory of CPM......................................................................37
3.2.1. Basic Theory....................................................................37
3.2.2. Setup of CPM..................................................................39
3.2.3. Calibration CPM spectrum to absolute scale...............40
3.2.4. Labview control diagram...............................................45
3.3. The deposition system...........................................................46
3.4. Hydrogen Phenomena in Hydrogenated silicon.................46
3.5. Correlation of defect densities and absorption
coefficient................................................................................48
3.6. Summary................................................................................50
Chapter 4 Result and Discussion...........................................................51
4.1. Results and discussion: a-Si:H.................................................53
4.1.1. Amorphous Si:H characteristics....................................53
4.1.2. The optical absorption edge of a-Si:H...........................58
4.1.3. Absorption coefficient at 1.2eV......................................59
4.2. Results and discussion: μc-Si:H...............................................60
Chapter 5 Conclusion.............................................................................63
Bibliography............................................................................................65
參考文獻 [1]Wikipedia, Sunlight, http://en.wikipedia.org/wiki/Sunlight (March, 2009).
[2]W. E. Spear, P. G. LeComber, Solid State Comm. 17, 1193 (1975).
[3]R. C. Chittick, J. M. Alexander, and M. E. Sterling, J. Electrochem, Soc. 116, 77 (1969).
[4]D. E. Carlson, C. R. Wronski, Appl. Phys. Lett. 28, 671 (1976).
[5]T.D. Moustakas, D.A. Anderson, W. Paul, Solid State Comm. 23,155 (1977).
[6]D. Kaplan, N. Sol, G. Velasco ,P.A. Thomas, Appl. Phys. Lett. 35, 440 (1978).
[7]N. Sol, D. Kaplan, D. Dieumegard, D. Dubreuil , J. Non-Cryst. Solids 35, 36, 291 (1980).
[8]R. E. Viturro, K. Weiser, Phil. Mag. B 53, 93 (1986).
[9]N. Maley, J. S. Lannin, Phys. Rev. B 36, 1146 (1987).
[10]N. Wysch, F. Finger, T. J. McMahon, and M. Vanecek, J. Non-Cryst. Solids 137&138 , 347 (1991).
[11]R.A. Street, Hydrogenated amorphous silicon, Cambridge Univ. Press (1991).
[12]A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, Phys. Rev. B 45, 13367-13377 (1992).
[13]M. Sasaki, S. Okamoto, Y. Hishikawa, S. Tsuda, and S. Nakano , Sol. Energy Mater. Sol. Cells 34, 541 (1994).
[14]D. Ritter and K. Weiser, Opt. Commun. 57, 336 (1986).
[15]M. Vanecek and J. Kocka, A.Poruba, J. Appl. Phys. Vol. 78, No. 10, 6203 (1995).
[16]N. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed., Oxford University Press (1979).
[17]J. Kanicki, Amorphous and Microcrystalline Semiconductor Devices: Optoelectonic Devices, Artech House (1991).
[18]G. Beaucarne, Advances in OptoElectronics Vol. 2007, 36970, P12
[19]S. Veprek, F. A. Sarott, and Z. Iqbal, Phys. Rev. B 36, 3344 (1987).
[20]E. Bustarret, M. A. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988)
[21]J. Nelson , Physics of Solar Cells ,Imperial college (2003).
[22]R. E. I. Schropp, M.Zeman, Amorphous and Microcrystalline Silicon Solar Cells, Kluwer Academic Publishers (1998).
[23]G. P. Smestad , Optoelectronics of Solar Cells, SPIE PRESS (2002).
[24]M. Fukuda, Optical Semiconductor Devices, John Wiley & Sons, INC (1999).
[25]H. Fritzshe , Amorphous Silicon and Related Materials, World Scientific, Singapore (1989).
[26]S. O. Kasap , Principles of Electronic Materials and Devices, McGrawHill (2003)
[27]J. J. Loferski, J. Appl. Phys. 27, 277 (1956).
[28]D. E. Carlson, C. R. Wronski, Appl. Phys. Lett. 28, 11, 671-673 (1973). U.S. Patent #4,064,521.
[29]W. Paul, A. J. Lewis, G. A. N. Connell, T. D. Moustakas, Solid state Commun. 20, 969 (1976).
[30]C. C. Tsai, J. C. Knights, R. A. Lujan, et al., J. Non-cryst. Sol. 59 & 60, 731 (1983).
[31]A. Catalano, B.W. Faughnan, and A.R. Moore, Sol. Energy Mater. 13 , 65 (1986).
[32]K. Jiranapakul, K. Shirakawa, and J. Shirafuji, Jpn. J. Appl. Phys. 25 , 10, 1457 (1986).
[33]T. D. Moustakas, J. Pankove, ed., Semiconductors and Semimetals, Vol. 21, part A, Academic Press, New York (1984).
[34]T. D. Moustakas and H. P. Maruska, Appl. Phys. Lett. 43, 11, 1037 (1983).
[35]E. C. Freeman and W. Paul, Phys. Rev. B 20, 716 (1979).
[36]G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, and B. Brooks, Sol. Cells 2, 227 (1980).
[37]N. B. Boodman, H. Fritzsche, and H. Ozaki, J. Non-Cryst. Solids 35-36, 599 (1980).
[38]G. Lucovsky, R. J. Nemanich, and J. C. Knight, Phys. Rev. B 19, 2064 (1979).
[39]S. Veprek and V. Marecek, Solid state Electron. 11, 683 (1968).
[40]Y. Hamakawa, Y. Matsumoto, G. Hirata, and H. Okamoto, Mater. Res. Soc. Symp. Proc. 164, 291 (1990).
[41]K. Prasad, F. Finger, S. Dubail, A. Shah, and M. Schubert, J. Non-Cryst. Solids 137&138, 681 (1991).
[42]J. Meier et al., Mater. Res. Soc. Symp. Proc. 420, 3 (1996).
[43]A. V. Shah, H. Schade, M.Vanecek et al., Progress in Photovoltaics: Research and application, Vol. 12, No. 2-3, 113 (2004).
[44]B. Yan, G. Yue, J. M. Owens, J. Yang, and J. Guha, Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion, pp. 1477–1480, Waikoloa, Hawaii, USA, May (2006).
[45]T. D. Moustakas, D. Adler, ed., Proc. SPIE 407, 56 (1983).
[46]T. Tiedje, T. D. Moustakas, and J.M. Cebulka, Phys. Rev. 23, 5634 (1981).
[47]K. Jiranapakul, K. Shirakawa, and J. Shirafuji, Jpn. J. Appl. Phys. 25, 10, 1457 (1986).
[48]M. Pinarbasi, N. Maley,A. Myers, and J.R. Abelson, Thin Solid Films 171, 217 (1984).
[49]M. Vanecek, J. Kocka, J. Stuchlik, and A. Triska, Solid State Commun., Vol. 39, 1199 (1981).
[50]G. G. grimmeiss and L. A. Ledebo, J. Appl. Phys. 46, 2155 (1975).
[51]W. B. Jackson, N. M. Armer, A. C. Boccara, and D. Fournier, Appl. Opt. 20, 1333 (1981).
[52]T. Shimizu, X. Xu, H. Kidoh, A. Morimoto and M. Kumeda, J. Appl. Phys., 64, 5045 (1989).
[53]H. M. Brodsky, M. Cardona and J. J. Couomoet, Phys. Rev B, 16, 3556 (1977).
[54]P. J. Zanzucchi, C.R. Wronski, and D. E. Carlson, J. Appl. Phys., 48, 5227 (1977).
[55]M. Cardona, Phys. Stat. Sol. 186, 462 (1983).
[56]G. Lucovsky and W. B. Pollard, The Physics of Hydrogenated Amorphous Silicon, Part II, Topics in Applied Physics, 56, Springer, Berlin, 301 (1984).
[57]J. Poortmans and V. Arhipov, Thin Film Solar Cells Fabrication, Characterization and Applications, John Wiley & Sons Ltd., 182 (2006).
[58]G. P. Smestad, Optoelcetronics of solar cells, SPIE Press, 21 (2002).
[59]M. Kumeda, J. H. Zhou and T. Shimizu: 1994 IEEE First World Conf. Photovolatics Energy Conversion, 634 (1994).
[60]N. Hata, I. S. Osbourne, T. Ikeda, R. Durny and A. Matsuda, J. Non-Crys. Solids, 198-200, 415 (1996).
[61]T. Shimizu, M. Shimada, H. Sugiyama and M. Kumeda, Jpn. J. Appl. Phys., 40, 54 (2001).
[62]M. H. Brodsky and R. S. Title, Phys. Rev. Lett., 23, 581(1969)
[63]J. Tauc, Amorphous and liquid Semiconductors, Plenum Press, New York (1974).
[64]J. Bailat, PH. D. Thesis, University of Neuchâtel, (2004).
[65]M. Cardona, Phys. Stat. Sol. 118, 463(1983).
[66]M. Stutzmann, W. B. Jackson, and C. C. Tsai, Phys. Rev B, Vol. 32, No. 1, 23 (1985).
[67]R. H. Bube, L. E. Benatar, M. N. Grimbergen and D. Redfield, J. Appl. Phys. 72 12, 5766 (1992).
[68]S. O. Kasap, Principles of Electronic Materials and Devices, McGraw-Hill, 81 (2006).
[69]W. B. Jackson, N. M. Amer, J. Phys., C4, 42, 293 (1981).
[70]P. J. McElheny, J. Arch, H. Liu and S. J. Fonash, J. Appl. Phys. 64, 3, 1254 (1988).
[71]M. Zeman, J. A. Willemen, L. L. A. Vosteen, G. Tao and J. W. Metselaar, Sol. Energy Mater. Sol. Cells, 46, 81 (1997).
[72]D. Han, G. Yue, J. D. Lorentzen, and J. Lin, H. Habuchi, and Q. Wang, J. of Appl. Phys. 87, 4, 1882 (2000).
[73]G. Moddel, D. A. Anderson, and W. Paul, Phys. Rev. B 22, 1918 – 1925 (1980).
[74]J. Robertson, Phil. Mag. B, 63, 47 (1991).
[75]C. Droz, PH. D. Thesis, University of Neuchâtel, (2003).
[76]http://en.wikipedia.org/wiki/Energy_use (March 2009 )
指導教授 陳昇暉、李正中
(Sheng-Hui Chen、Cheng-Chung Lee)
審核日期 2009-3-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明