博碩士論文 952206016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.137.175.80
姓名 鄭中瑋(Chung-Wei Cheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 紅外波段高品質因素導波共振濾波器
(Study on High Quality-Factor Guided-Mode Resonance Filters in Infrared Region)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組★ 利用光展量概念之微型投影機光學設計方法與實作
★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文裡,相較於傳統光學濾波器是以多層薄膜堆疊的方式濾波,我們想利用導波模態共振濾波器這種簡單結構的濾波器。希望未來能應用於雷射共振腔裡的高反射鏡,使得出光的雷射為一個很純和指向性高的波長。所以我們理論設計的濾波器,其頻譜特性的目標為:高品質因素,故共振線寬能小於0.1nm;提高雜訊比,側帶高穿透率區域能大於700nm;最大穿透率能超過90%。而共振波長則以紅外波段為主。
我們提出的結構分別為:波導和光柵材料選擇SiNx,低被覆層為二氧化矽。先利用波導理論設計出波導厚度與特徵模態,爾後利用相位匹配得到光柵的週期,接著引入等效介質理論觀察側帶的穿透率。最後經過製程的容忍度分析,並實際製作出設計的導波模態共振濾波器,對模擬進行比對和驗證。
設計出的導波模態共振濾波器,在TE和TM模態下會有不同的結構參數。在光柵厚度為30nm下:針對TE模態,共振波長在1550.4nm,共振線寬為0.1nm,側帶高穿透率區域為680.8nm,品質因素為15504,最大穿透率為0.93。而TM模態,共振波長在1549.9nm,共振線寬為0.011nm,側帶高穿透率區域為733.76nm,品質因素為140902,最大穿透率為0.926。成功設計出符合我們目標的導波模態共振濾波器。
製程則以TE模態為例,實地量測後共振波長在1.58μm,共振線寬為0.92nm,側帶高穿透率區域為415nnm,品質因素為1718,最大穿透率約為0.94,這與將結構參數代入模擬計算得到的頻譜特性大致吻合。至此,我們成功的實際製作出滿足我們設定目標的導波模態共振波器。
摘要(英) In this letter, the two-layer ultranarrow bandstop guided-mode resonance filter with a flattened sideband within a wide spectral range is implemented by using the combination of a subwavelength grating, a waveguide layer with multiple guided modes, and a lower cladding layer with a quarter-wave thickness. The proposed filter based on a free-standing silicon nitride membrane suspended on a silicon substrate is realized by using the anisotropic wet etching to remove the substrate beneath the silicon nitride layer. Both of grating and waveguide structures are fabricated simultaneously on a silicon nitride membrane. Moreover, the silicon dioxide membrane playing a role on modifying the spectral response of proposed GMR filter is deposited beneath the free-standing silicon nitride layer.
The incident light is TE mode and the thickness of grating is 30nm. The resonance wavelength of proposed band-stop filter is controlled at 1550.4nm with a linewidth (FWHM) less than 0.1 nm. The improved spectral performance including the sideband can be extended to be nm with the maximum transmittance greater than 93%. The quality factor is 15504. However, the incident light is TM mode and the thickness of grating is 30nm. The resonance wavelength of proposed band-stop filter is controlled at 1549.9nm with a linewidth (FWHM) less than 0.011 nm. The improved spectral performance including the sideband can be extended to be nm with the maximum transmittance greater than 93%. The quality factor is 140902.
關鍵字(中) ★ 濾波器
★ 品質因素
★ 窄頻
★ 波導
關鍵字(英) ★ waveguide
★ GMR
★ filter
★ quality factor
論文目次 摘要............................................................i
致謝辭...........................................................iv
目錄...........................................................vi
圖目錄....................................................... viii
第一章 導論...................................................1
1.1導波模態共振濾波器簡介..............................3
1.2研究動機............................................6
第二章 導波模態共振濾波器原理................................11
2.1光柵繞射理論.......................................13
2.2波導理論...........................................15
2.3等效折射率理論.....................................18
2.4導波模態共振原理...................................21
2.5嚴格耦合波理論.....................................25
第三章 紅外波段高品質因素導波共振濾波器結構設計與模擬........29
3.1設計與分析.........................................30
3.2驗證等效介質理論...................................47
3.3製程容忍度的模擬與分析.............................49
第四章 實驗製作..............................................52
4.1實驗流程...........................................53
4.2儀器介紹...........................................54
4.2.1感應耦合電漿蝕刻機.............................55
4.2.2電子束微影設備.................................56
4.2.3電漿輔助化學氣相沉積系統.......................57
4.3製作流程...........................................58
第五章 量測結果..............................................61
5.1儀器架設...........................................62
5.2模擬結果驗證.......................................64
第六章 結論..................................................68
參考文獻......................................................70
參考文獻 [1]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396(1902)
[2]A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 10, 1275(1965)
[3]E. B. Grann, M. G. Moharam, and D. A. Pommet, ”Artificial uniaxial and biaxial dielectrics with use of two-dimensional sub-wavelength binary gratings,” J. Opt. Soc. Am. A11, 2695(1994)
[4]李正中, “薄膜光學與鍍膜技術” 第四版
[5]Southwell W. H. “Spectral response calculations of regate filters using couple-wave theory,” J. Opt. Soc. Am. A5, 1558-1564(1988)
[6]S. Tibuleac, and R. Magnusson, “Diffractive Narrow-Band Transmission Filters Based on Guided-Mode Resonance Effects in Thin-Film Multilayers,” IEEE Photo. Tech Lett, VOL. 9, NO. 4(1997)
[7]S. Tibuleac, R. Magnusson, ” Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett., Vol. 26, Issue 9, pp. 584-586 (May 2001)
[8] Chao-Yi Tai a), Bayram Unal, and James S. Wilkinson, ”Optical coupling between a self-assembled microsphere grating and a rib waveguide,” Appl. Phys. Lett. 84, 3513(2004)
[9]Che-Lung Hsu, Yung-Chih Liu, Chih-Ming Wang, Mount-Learn Wu, Ya-Lun Tsai, Yue-Hong Chou, Chien-Chieh Lee, and Jenq-Yang Chang,” Bulk-Micromachined Optical Filter Based on Guided-Mode Resonance in Silicon-Nitride Membrane,” J. Lightwave Tech., Vol. 24, Issue 4, pp. 1922- (April 2006)
[10] S. Sinzinger and J. Jahns, Microoptics, Wiley-Vch, New York, 166 (1999)
[11] R. C. Tyan, P. C. Sun, A. Scherer, and Yeshayahu, “Polarizing beam splitter based on anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings “, Opt. Let. 21, 761 (1996)
[12] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Guided-mode resonances in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A 8, 1470 (1990).
[13] M. G.. Moharam and T. K. Gaylord, ”Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71 811(1981)
[14]T. K. Gaylord and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894-937(1985)
[15]Robert R. Boye and Raymond K. Kostuk ‘‘Investigation of the effect of finite grating size on the performance of guided-mode resonance filters” Appl. Opt. 39, 3649 (2000).
[16] Knop K. “Rigorous diffraction theory for transmission phase grating with deep rectangular grooves,”J. Opt. Soc. Am. 68 120(1978)
指導教授 伍茂仁(Mount-Learn Wu) 審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明