博碩士論文 952206028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.16.47.89
姓名 許建祺(Chien-Chi Hsu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 Thin-GaN發光二極體電性改善之研究
(The Improvement of Electrical Characteristic in Thin-GaN Light-Emitting Diodes)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以氮化鎵為基礎之發光二極體(GaN-based LED)的晶粒製程技術主要分為傳統的打線(Wire-Bonding)封裝製程、覆晶(Flip-Chip)製程以及thin-GaN製程等技術,由於藍寶石(Sapphire)基板之高熱阻使得傳統打線、覆晶製程不適用於高功率操作之LED。本論文主要研究thin-GaN製程,以晶圓鍵合(Wafer Bonding)技術與雷射剝離(Laser Lift-Off)技術,將氮化鎵薄膜封裝於導熱效果較佳之矽(Si)基板上。
在製作thin-GaN LED中,發現鈍化層(Passivation)完整性與緻密性會對LED之逆偏漏電流(Reverse Leakage Current)造成影響,而電漿損害(Plasma Damage)以及高串聯電阻(Series Resistance)也會破壞LED之順向偏壓(Forward Voltage)。針對改善thin-GaN LED之逆偏漏電流,我們利用高緻密性之二氧化矽(SiO2)做為鈍化層,成功將thin-GaN LED在-5V逆向偏壓之漏電流降至-0.15?A;在改善thin-GaN LED之順向偏壓,製作Ni薄膜避免電漿損害,以及移除未摻雜氮化鎵(u-GaN Removal)薄膜降低串聯電阻,有效下降thin-GaN LED之順向偏壓。
在我們製作之thin-GaN LED中,順向偏壓最佳約為3.6V,相較於文獻有改善空間;而本研究使用晶圓鍵合與雷射剝離技術,對thin-GaN LED建立製程平台,並改善thin-GaN LED之電特性表現。
摘要(英) Chip process technology of GaN-based light-emitting diodes includes wire-bonding, flip-chip, thin-GaN, and so on. However, wire-bonding and flip-chip are inappropriate for high-power LED chips due to high thermal resistance of sapphire substrates. In this thesis, the GaN thin flim is packaged on a material with higher thermal conductivity, silicon substrates, by wafer bonding technology and laser lift-off.
In the fabrication process of thin-GaN LED, we discover that the coverage and the denseness of passivation effect the reverse leakage current of LED. Further, plasma damage and series resistance also degrade the forward voltage of LED. To improve the leakage current of thin-GaN LED, a highly dense passivation made of SiO2 is utilized; leakage current achieves -0.15uA at reverse voltage of -5V. Also, Ni thin film applied to avoid damage caused by plasma is in order to ameliorate the forward voltage of thin-GaN LED. Moreover, decrease of series resistance is achieved by u-GaN removal, which is to reduce the forward voltage of thin-GaN LED.
The best forward voltage of our fabricated thin-GaN LED is 3.6V approximately; nevertheless, it still need to be improved more compared to the reference. A platform of thin-GaN LED chip process is established for improving the electrical characteristics of thin-GaN LED is utilized by wafer bonding and laser lift-off.
關鍵字(中) ★ 電性改善
★ 雷射剝離
★ thin-GaN發光二極體
關鍵字(英) ★ thin-GaN LEDs
★ improvement of electrical characteristics
★ laser lift-off
論文目次 摘 要 ........................................................................................................ i
Abstract ....................................................................................................... ii
誌 謝 ...................................................................................................... iii
目 錄 ...................................................................................................... iv
圖 目 錄 ..................................................................................................... vii
表 目 錄 ...................................................................................................... xi
第一章 序論 ............................................................................................... 1
1-1 前言 ............................................................................................... 1
1-2 研究動機 ....................................................................................... 5
第二章 Thin-GaN 發光二極體與文獻回顧 ............................................. 8
2-1 發光二極體原理 ........................................................................... 8
2-1-1 發光二極體光特性之原理簡介 ................................................... 8
2-1-2 發光二極體電特性之原理簡介 ................................................. 12
2-2 Thin-GaN 發光二極體之特性討論 ........................................... 17
2-2-1 基板材料之熱傳導特性 ............................................................. 18
2-2-2 電流分佈對發光二極體之影響 ................................................. 20
2-3 Thin-GaN 發光二極體實驗製作之原理 ................................... 23
2-3-1 雷射剝離技術之原理簡介 ......................................................... 23
2-3-2 傳輸線模型之原理簡介 ............................................................. 26
2-3-3 電制激發光譜之量測系統介紹 ................................................. 28
2-3-4 電流電壓特性曲線之量測系統介紹 ......................................... 28
2-4 Thin-GaN 發光二極體之電特性改善 ....................................... 31
2-4-1 影響thin-GaN 發光二極體電特性之討論 ............................... 31
2-4-2 金屬歐姆接觸對於thin-GaN 發光二極體之影響 ................... 32
第三章 Thin-GaN 發光二極體之製作流程 ........................................... 38
3-1 Thin-GaN 發光二極體之前段製程 ........................................... 38
3-1-1 氮化鎵試片結構 ......................................................................... 38
3-1-2 孤立晶粒之製作 ......................................................................... 40
3-1-3 鈍化層之製作 ............................................................................. 47
3-1-4 p 側電極金屬與鍵合金屬之製作 .............................................. 49
3-2 晶圓鍵合與雷射剝離製程 ......................................................... 54
3-2-1 晶圓鍵合技術 ............................................................................. 57
3-2-2 雷射剝離製程 ............................................................................. 57
3-3 Thin-GaN 發光二極體之後段製程 ........................................... 59
3-3-1 移除未摻雜氮化鎵薄膜 ............................................................. 61
3-3-2 n 側電極金屬之製作 .................................................................. 62
第四章 Thin-GaN 發光二極體之量測與結果討論 ............................... 68
4-1 Thin-GaN 發光二極體電性改善製程與量測之對照 ............... 68
4-2 Thin-GaN 發光二極體改善逆偏漏電流之分析討論 ............... 70
4-2-1 應用不同硬式遮蔽層之逆偏漏電流量測結果及討論 ............ 70
4-2-2 應用不同鈍化層之漏電流量測結果及討論 ............................. 72
4-3 Thin-GaN 發光二極體改善順向偏壓之分析討論 ................... 74
4-3-1 應用不同硬式遮蔽層之順向偏壓量測結果及討論 ................ 74
4-3-2 應用不同鈍化層之順向偏壓量測結果及討論......................... 77
4-3-3 移除未摻雜氮化鎵之順向偏壓量測結果及討論 .................... 79
第五章 結論與未來展望 ......................................................................... 83
參 考 文 獻 ..................................................................................................... 85
參考文獻 [1]取自http://www.lexus.com.tw
[2]取自http://www.cree.com/products/xlamp7090_xre.asp
[3]取自http://www.sonystyle.com.tw/vaio/#product-SZ-LED
[4]I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “Effects of AlN buffer layer on crystallographic structure and on electrical and optical-properties of GaN and Ga1-xAlxN films grown on sapphire substrate by MOVPE,” Journal of Crystal Growth, Vol. 98, pp. 209, 1989.
[5]S Nakamura, “GaN growth using GaN buffer layer,” Japanese Journal of Applied Physics Part 2-Letters, Vol. 30, pp. L1705, 1991.
[6]S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting-diodes,” Applied Physics Letters, Vol. 67, pp. 1868, 1995.
[7]F. M. Steranka, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N. Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. Rudaz, Y.-C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier, and J. J. Wierer, “High power LEDs – Technology status and market applications,” Physica Status Solidi A-Applied Research, Vol. 194, pp. 380, 2002.
[8]E. F. Schubert, Light-Emitting Diodes, 2nd ed., Cambridge Univ. Press, New York, 2006.
[9]史光國,半導體發光二極體及固態照明,全華科技圖書股份有限公司,台北是,民國九十四年。
[10]N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J. W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≦2000 Å) active regions,” Applied Physics Letters, Vol. 74, pp. 2230, 1999.
[11]T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, “Theoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirror,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, Vol.35, pp. 97, 1996.
[12]M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Applied Physics Letter, Vol. 75, pp. 2365, 1999.
[13]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Applied Physics Letters, Vol. 84, pp. 855, 2004.
[14]C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, and G. C. Chi, “Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN,” Applied Physics Letters, Vol. 90, pp. 142115, 2007.
[15]施敏(S. M. Sze)著,半導體元件物理與製作技術,黃調元譯,二版,國立交通大學出版社,新竹,民國九十一年。
[16]取自http://www.hbcpnetbase.com/
[17]Z.S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, “Enhancement of (In,Ga)N light-emitting diode performance by laser liftoff and transfer from sapphire to silicon,” IEEE Photonics Technology Letters, Vol. 14, pp. 1400, 2002.
[18]C. F. Chu, F. I. Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wang, “Study of GaN light-emitting diodes fabricated by laser lift-off technique,” Journal Of Applied Physics, Vol. 95, pp. 3916, 2004.
[19]李偉吉,「具IZO透明導電層之高功率大面積垂直結構GaN-基LEDs之研製」,國立成功大學,碩士論文,民國九十五年。
[20]X. A. Cao and S. D. Arthur, “High-power and reliable operation of vertical light-emitting diodes on bulk GaN,” Applied Physics Letters, Vol. 85, pp. 3971, 2004.
[21]M. K.Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films,” Applied Physics Letters, Vol. 69, pp. 1749, 1996.
[22]W. S. Wang, L. F. Schloss, G. S. Sudhir, B. P. Linder, K. M. Yu, E. R. Weber, T Sands, and N. W. Cheung, “Pulsed excimer laser processing of AlN/GaN thin films,” Master. Res. Soc. Symp., Proc. 449, pp. 1011, 1997
[23]X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Letters, Vol. 23, pp. 535, 2002.
[24]V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, M. A. Khan, N. Pala, M. Shur, and R. Gaska, “SiO2-passivated lateral-geometry GaN transparent Schottky-barrier detectors,” Applied Physics Letters, Vol. 77, pp. 863, 2000.
[25]X. A. Cao, P. M. Sandvik, S. F. LeBoeuf, and S. D. Arthur, “Defect generation in InGaN/GaN light-emitting diodes under forward and reverse electrical stresses,” Microelectronics Reliability, Vol. 43, pp. 1987, 2003.
[26]C. Huh, S. W. Kim, H. S. Kim, H. M. Kim, H. Hwang, and S. J. Park, “Effects of sulfur treatment on electrical and optical performance of InGaN/GaN multiple-quantum-well blue light-emitting diodes,” Applied Physics Letters, Vol. 78, pp. 1766, 2001.
[27]H. M. Kim, C. Huh, S. W. Kim, N. M. Park, and S. J. Park, “Suppression of leakage current in InGaN/GaN multiple-quantum well LEDs by N2O plasma treatment,” Electrochemical And Solid State Letters, Vol. 7, pp. G241, 2004.
[28]S. H. Huang, R. H. Horng, S. L. Li, K. W. Yen, D. S. Wuu, C. K. Lin, H. Liu, “Thermally stable mirror structures for vertical-conducting GaN/Mirror/Si light-emitting diodes,” IEEE Photonics Technology Letters, Vol. 19, pp. 1913, 2007.
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明