參考文獻 |
1. 田永銘、劉文智,「以PFC2D探討巴西試驗下岩石裂縫發展與破壞機制」,中華民國力學學會第三十六屆全國力學會議,中壢(2012)。
2. 徐書政,「異向性岩石張力強度之研究」,碩士論文,國立成功大學資源工程學系,台南(2000)。
3. 郭明傳,「複合岩體之岩塊體積比量測及其力學行為」,博士論文,國立中央大學土木工程研究所,中壢(2005)。
4. 楊明宗,「硬頁岩之張力行為」,碩士論文,國立交通大學土木工程研究所,新竹(1995)。
5. 劉文智、田永銘,「以數值模擬層狀岩石巴西試驗」,碩士論文,國立中央大學土木工程研究所,中壢(2013)。
6. 蕭永成,「異向性大理岩之力學性質研究」,碩士論文,國立臺北科技大學材料及資源工程學系,台北(2000)。
7. Amadei, B., “Rock Anisotropy and the Theory of Stress Measurements,” Springer-Verlag, New York (1983).
8. Amadei, B., “Important of anisotropy when estimating and measuring in situ stress in rock,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 33, pp. 293-325 (1996).
9. Chen, C.S., Pan, E., and Amadei, B., “Determination of deformability and tensile strength of anisotropic rock using Brazilian tests,” International Journal of Rock Mechanics and Mining Sciences, Vol.35, No. 1, pp. 43-61 (1998).
10. Cho, J.W., Kim, H., Jeon, S., and Min, K.B., “Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist,” International Journal of Rock Mechanics & Mining Sciences, Vol. 50, pp.158-169 (2012).
11. Cho, N., Martin, C.D., Sego, D.C., “A clumped particle model for rock,” International Journal of Rock Mechanics & Mining Sciences, Vol.44, pp. 997-1010 (2007).
12. Claesson, J., and Bohloli, B., “Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution,” International Journal of Rock Mechanics & Mining Sciences, Vol. 39, pp. 991-1004 (2002).
13. 11. Cundall, P.A. and Strack, O.D.L., “A discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, pp. 47-65 (1979).
14. Dan, D.Q., Konietzky, H., and Herbst, M., “Brazilian tensile strength tests on some anisotropic rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 58, pp. 1-7 (2013).
15. Dan, D.Q., and Konietzky, H., “Numerical simulations and interpretations of Brazilian tensile tests on transversely isotropic rocks” International Journal of Rock Mechanics and Mining Sciences, Vol. 71, pp. 53-63 (2014).
16. Debecker, B., and Vervoort, A., “Experimental observation of fracture patterns in layered slate,” International Journal of Fracture, Vol. 159, Issue 1, pp. 51-62 (2009).
17. Debecker, B., and Vervoort, A., “Two-dimensional discrete element simulations of the fracture behavior of slate, "International Journal of Rock Mechanics & Mining Sciences, Vol. 61, pp. 161-170 (2013).
18. Fakhimi, A., “Application of slightly overlapped circular particles assembly in numerical simulation of rocks with high friction angles,” Engineering Geology, Vol. 74, Issue 1-2, pp. 129-138 (2004).
19. Fairhurst, C., “On the validity of the Brazilian test for brittle materials,” International Journal of Rock Mechanics & Mining Sciences, Vol. 1, pp. 535-546 (1964).
20. Feng, X.T., Pan, P.Z., and Zhou, H., “Simulation of the rock micro fracturing process under uniaxial compression using an elastic-plastic cellular automaton,” International Journal of Rock Mechanics & Mining Sciences, Vol. 43, Issue 7, pp. 1091-1108 (2006).
21. Fowell, F.J, “Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 32, No. 1, pp. 57-64 (1995).
22. Ghazvinian, A., Sarfarazi, V., Schubert, W., Blumel, M., “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mechanics and Rock Engineering, Vol. 45, Issue 5, pp. 677-693 (2012).
23. Goodman, R.E., “Introduction to Rock Mechanics,” 2nd edn. John Wiley, Singapore (1989).
24. Hondros, G., “The evaluation of Poisson’s ratio and modulus of materials of a low tensile resistance by Brazilian test with particular reference to concrete,” Journal of Applied Science, Vol. 10, pp. 243-268 (1959).
25. ISRM, “Suggested methods for determining tensile strength of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15 No. 3, pp. 99-103 (1978).
26. Itasca Consulting Group Inc., PFC3D (Particle flow code in 2 dimensions), Version 4.0 (manual), Itasca Consulting Group Inc., Minneapolis, MN: ICG (2009).
27. Lekhnitskii, S.G., “Anisotropic plates,” Gordon and Breach Scientific Publications, New York (1968).
28. Liao, J.J., Yang, M.T., and Hsieh, H.Y., “Direct tensile behavior of a transversely isotropic rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 5, pp. 837-849 (1997).
29. Liu, W.C., Tien, Y.M., and Juang, C.H., “Numerical simulation for layered rock under Brazilian test,” 46th U.S. Rock Mechanics / Geomechanics Symposium, Chicago, USA, 24–27 June 2012 .Paper No. 12-492 (2012).
30. Liu, W.C., Tien, Y.M., Juang, C.H., and Lin, J. S., “Numerical investigation of crack propagation and failure mechanism of layered rocks,” 47th U.S. Rock Mechanics / Geomechanics Symposium, San Francisco, USA, 23–26 June 2013 .Paper No. 13-673 (2013).
31. Ma, G.W., Wang, X.J., and Ren, F., “Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method,” International Journal of Rock Mechanics & Mining Sciences, Vol. 48, Issue 3, pp. 353-363 (2011).
32. Mahabadi, O.K., Grasselli, G., and Munjiza, A., “Numerical modelling of a Brazilian disc test of layered rocks using the combine definite-discrete element method,” Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto (2009).
33. Margielewski, W., “Structural control and types of movements of rock mass in anisotropic rocks: Case studies in the Polish Flysch Carpathians.” Geomorphology, Vol. 77, pp. 47-68 (2006).
34. Mellor, M., Hawkes, I., “Measurement of tensile strength by diametral compression of discs and annuli,” Engineering Geology, Vol. 5, Issue 3, pp. 173-225 (1971).
35. Nakashima, S., Taguchi, K., Moritoshi, A., and Shimizu, N., “Loading conditions in the Brazilian test simulation by DEM,” 47th U.S. Rock Mechanics / Geomechanics Symposium, San Fransico, USA, 23–26 June 2013 .Paper No. 13-515 (2013).
36. Park, B., and Min, K. B., “Discrete element modeling of transversely isotropic rock,” 47th U.S. Rock Mechanics / Geomechanics Symposium, San Francisco, USA, 23–26 June 2013 .Paper No. 13-490 (2013).
37. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” International Journal of Rock Mechanics & Mining Sciences, Vol. 41, pp. 1329–1346 (2004).
38. Stefanizzi, S., Barla, G., and Kaiser, P.K., “Numerical modeling of rock mechanics tests in layered media using a finite/discrete element approach,” International Association for Computer Methods and Advances in Geomechanics, India (2008).
39. Tavallali, A., and Vervoort, A., “Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions, "International Journal of Rock Mechanics & Mining Sciences, Vol. 47, Issue 2, pp. 313-322 (2010a).
40. Tavallali, A., and Vervoort, A., “Failure of layered sandstone under Brazilian Test conditions: effect of micro-scale parameters on macro-scale behavior, "Rock Mech. Rock Eng. Vol. 43, pp. 641-653 (2010b).
41. Tavallali, A., and Vervoort, A., “Behavior of layered sandstone under Brazilian test conditions- Layer orientation and shape effects, "International Journal of Rock Mechanics and Geotechnical engineering, Vol. 43, pp. 641-653 (2013).
42. Tien, Y.M., and Kuo, M.C., “A failure criterion for transversely isotropic rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 3, pp. 399-412 (2001).
43. Tien, Y.M., Kuo, M.C., and Juang, G.H., “An experimental investigation of the failure mechanism of simulated transversely isotropic rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 43, pp. 1163-1181 (2006).
44. Vervoort, A., Min, K.B., Konietzky, H., Cho, J.W., Debecker, B., Dan, D.Q., Ftűhwirt, T., and Tavallali, A., “Failure of transversely isotropic rock under Brazilian test conditions,” International Journal of Rock Mechanics and Mining Sciences, Vol. 70, pp. 343-352 (2014).
45. Vutukuri, V.S., Lama, R.D., and Saluja, S. S., “Handbook on Mechanical Properties of Rocks,” Vol. I (1974).
46. Yanagidani, T., Sano, O, Terada, M., and Ito, I., “The observation of cracks propagating in diametrically-compressed rock disks,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15, Issue 5, pp. 225-235 (1978).
47. Ye, J., Wu, F.Q., and Sun, J.Z., “Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads,” International Journal of Rock Mechanics & Mining Sciences, Vol. 46, Issue 3, pp. 568-576 (2009).
48. Yu, Y., Zhang, J., and Zhang, J., “A modified Brazilian disk tension test,” International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 421-425 (2009).
49. Zhu, W.C., and Tang, C.A., “Numerical simulation on of Brazilian disk rock failure under static and dynamic loading,” International Journal of Rock Mechanics & Mining Sciences, Vol. 43, Issue 2, pp. 236-252 (2006).
50. Zhong, X.P., and Wong, L. N. Y., “Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression,” International Journal of Fracture, Vol. 180, pp. 93-110 (2013). |