博碩士論文 103322032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.145.91.152
姓名 馬承砡(Cheng-yu Ma)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 橫向等向性岩石巴西試驗之數值模擬
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文以顆粒流程式PFC3D(Particle Flow Code3D)模擬橫向等向性岩石在巴西試驗下之張力強度、破壞模態及裂隙發展過程,探討不同方位角(ψ)與加壓角(β)對岩石張力強度之影響。進行橫向等向性岩石模擬前,亦針對等向性岩石巴西試驗探討微觀參數、試體厚徑比、顆粒尺寸效應、加壓速率與原生異向性之影響,亦作為橫向等向性岩石參數之參考。
本文模擬具有不同方位角之橫向等向性岩石在承受不同加壓角之荷重作用下,其巴西張力強度與Dan et al., (2013)針對佛萊堡片麻岩(Freiberger Gneiss)所進行之試驗結果具定性上相似性,數值模擬結果顯示:方位角與加壓角皆會影響巴西張力強度,且方位角對巴西張力強度之影響較加壓角之影響顯著。不同方位角之橫向等向性岩石承受不同加壓角的荷重,其微裂隙發展遠較等向性岩石複雜。即使同一方位角的試體,在不同的切片處其破壞模態亦有所不同,可區分為七種破壞模態:(1)穿層破壞模態、(2)層間劈裂模態(3)、弱層劈裂模態、(4)層間滑動模態、(5)弱層滑動模態、(6)混合破壞模態及(7)壓碎破壞模態。
摘要(英)

This study employs 3-D Particle Flow Code (PFC3D) to simulate transversely isotropic rock materials for differential orientation angle (ψ) and loading angle (β) that varies between "0°" to "90° " under Brazilian test. The majority of this study presents the results of the numerical simulation of the failure process, failure modes and tensile strength. Before simulating transversely isotropic rock, this study also carries out the parametric studies (including the analysis of micro-parameters, thickness diameter ratio, particle size effect, displacement rate and inherent anisotropy) of isotropic rock under Brazilian test.
This study simulates different orientation angles of transversely isotropic rock with different loading angles, the numerical simulate results are similar to the result of Brazilian test (Freiberger Gneiss) by Dan et al., (2013). It has shown that the orientation angle and loading angle both will affect tensile strength, and the influence of orientation angle is much larger than the influence of loading angle. The failure procedure of transversely isotropic rocks is more complex than isotropic rocks, even the same specimen has different failure mode in different slices, we observe seven major failure mode: (1) Split across layer mode; (2) Split along layer mode; (3) Split along weak layer mode; (4) Sliding along layer mode; (5) Sliding along weak layer mode; (6) Mixed mode; (7) Crush mode.
關鍵字(中) ★ 橫向等向性岩石
★ 巴西試驗
★ 破壞模態
★ 張力強度
關鍵字(英) ★ transversely isotropic rock
★ Brazilian test
★ failure mode
★ tensile strength
論文目次

目錄
摘要I
ABSTRACT .. II
致謝III
目錄IV
圖目錄..VI
表目錄.. XIII
第一章 緒論 1
1.1 研究動機. 1
1.2 研究方法與目的. 3
第二章 文獻回顧. 5
2.1 橫向等向性岩石之定義. 5
2.2 室內張力試驗.. 6
2.3 層狀岩石巴西試驗. 10
2.4 層狀岩石巴西試驗數值模擬 20
第三章 數值模擬方法 27
3.1 顆粒流程式 PFC3D介紹. 27
3.1.1 簡介及特色 .. 27
3.1.2 顆粒接觸模式 . 30
3.1.3 相關應用 34
V
3.2 數值分析步驟 35
3.2.1 加壓角與方位角之定義 35
3.2.2 層狀岩石模型建置步驟 37
3.3 參數設定.. 42
第四章 數值模擬結果與探討 43
4.1 等向性岩石巴西試驗模擬. 43
4.1.1 微觀參數研究 . 43
4.1.2 試體厚徑比之影響 .. 63
4.1.3 加壓速率之影響 65
4.1.4 顆粒尺寸效應 . 67
4.1.5 試體之原生異向性 .. 69
4.2 橫向等向性岩石巴西試驗模擬.. 74
4.2.1 裂隙發展過程 . 75
4.2.2 破壞模態分類 . 96
4.2.3 方位角與加壓角對巴西張力強度異向性之影響 104
第五章 結論與建議.. 122
5.1 結論.. 122
5.2 建議.. 125
參考文獻.. 126
參考文獻 1. 田永銘、劉文智,「以PFC2D探討巴西試驗下岩石裂縫發展與破壞機制」,中華民國力學學會第三十六屆全國力學會議,中壢(2012)。
2. 徐書政,「異向性岩石張力強度之研究」,碩士論文,國立成功大學資源工程學系,台南(2000)。
3. 郭明傳,「複合岩體之岩塊體積比量測及其力學行為」,博士論文,國立中央大學土木工程研究所,中壢(2005)。
4. 楊明宗,「硬頁岩之張力行為」,碩士論文,國立交通大學土木工程研究所,新竹(1995)。
5. 劉文智、田永銘,「以數值模擬層狀岩石巴西試驗」,碩士論文,國立中央大學土木工程研究所,中壢(2013)。
6. 蕭永成,「異向性大理岩之力學性質研究」,碩士論文,國立臺北科技大學材料及資源工程學系,台北(2000)。
7. Amadei, B., “Rock Anisotropy and the Theory of Stress Measurements,” Springer-Verlag, New York (1983).
8. Amadei, B., “Important of anisotropy when estimating and measuring in situ stress in rock,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 33, pp. 293-325 (1996).
9. Chen, C.S., Pan, E., and Amadei, B., “Determination of deformability and tensile strength of anisotropic rock using Brazilian tests,” International Journal of Rock Mechanics and Mining Sciences, Vol.35, No. 1, pp. 43-61 (1998).
10. Cho, J.W., Kim, H., Jeon, S., and Min, K.B., “Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist,” International Journal of Rock Mechanics & Mining Sciences, Vol. 50, pp.158-169 (2012).
11. Cho, N., Martin, C.D., Sego, D.C., “A clumped particle model for rock,” International Journal of Rock Mechanics & Mining Sciences, Vol.44, pp. 997-1010 (2007).
12. Claesson, J., and Bohloli, B., “Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution,” International Journal of Rock Mechanics & Mining Sciences, Vol. 39, pp. 991-1004 (2002).
13. 11. Cundall, P.A. and Strack, O.D.L., “A discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, pp. 47-65 (1979).
14. Dan, D.Q., Konietzky, H., and Herbst, M., “Brazilian tensile strength tests on some anisotropic rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 58, pp. 1-7 (2013).
15. Dan, D.Q., and Konietzky, H., “Numerical simulations and interpretations of Brazilian tensile tests on transversely isotropic rocks” International Journal of Rock Mechanics and Mining Sciences, Vol. 71, pp. 53-63 (2014).
16. Debecker, B., and Vervoort, A., “Experimental observation of fracture patterns in layered slate,” International Journal of Fracture, Vol. 159, Issue 1, pp. 51-62 (2009).
17. Debecker, B., and Vervoort, A., “Two-dimensional discrete element simulations of the fracture behavior of slate, "International Journal of Rock Mechanics & Mining Sciences, Vol. 61, pp. 161-170 (2013).
18. Fakhimi, A., “Application of slightly overlapped circular particles assembly in numerical simulation of rocks with high friction angles,” Engineering Geology, Vol. 74, Issue 1-2, pp. 129-138 (2004).
19. Fairhurst, C., “On the validity of the Brazilian test for brittle materials,” International Journal of Rock Mechanics & Mining Sciences, Vol. 1, pp. 535-546 (1964).
20. Feng, X.T., Pan, P.Z., and Zhou, H., “Simulation of the rock micro fracturing process under uniaxial compression using an elastic-plastic cellular automaton,” International Journal of Rock Mechanics & Mining Sciences, Vol. 43, Issue 7, pp. 1091-1108 (2006).
21. Fowell, F.J, “Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 32, No. 1, pp. 57-64 (1995).
22. Ghazvinian, A., Sarfarazi, V., Schubert, W., Blumel, M., “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mechanics and Rock Engineering, Vol. 45, Issue 5, pp. 677-693 (2012).
23. Goodman, R.E., “Introduction to Rock Mechanics,” 2nd edn. John Wiley, Singapore (1989).
24. Hondros, G., “The evaluation of Poisson’s ratio and modulus of materials of a low tensile resistance by Brazilian test with particular reference to concrete,” Journal of Applied Science, Vol. 10, pp. 243-268 (1959).
25. ISRM, “Suggested methods for determining tensile strength of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15 No. 3, pp. 99-103 (1978).
26. Itasca Consulting Group Inc., PFC3D (Particle flow code in 2 dimensions), Version 4.0 (manual), Itasca Consulting Group Inc., Minneapolis, MN: ICG (2009).
27. Lekhnitskii, S.G., “Anisotropic plates,” Gordon and Breach Scientific Publications, New York (1968).
28. Liao, J.J., Yang, M.T., and Hsieh, H.Y., “Direct tensile behavior of a transversely isotropic rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 5, pp. 837-849 (1997).
29. Liu, W.C., Tien, Y.M., and Juang, C.H., “Numerical simulation for layered rock under Brazilian test,” 46th U.S. Rock Mechanics / Geomechanics Symposium, Chicago, USA, 24–27 June 2012 .Paper No. 12-492 (2012).
30. Liu, W.C., Tien, Y.M., Juang, C.H., and Lin, J. S., “Numerical investigation of crack propagation and failure mechanism of layered rocks,” 47th U.S. Rock Mechanics / Geomechanics Symposium, San Francisco, USA, 23–26 June 2013 .Paper No. 13-673 (2013).
31. Ma, G.W., Wang, X.J., and Ren, F., “Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method,” International Journal of Rock Mechanics & Mining Sciences, Vol. 48, Issue 3, pp. 353-363 (2011).
32. Mahabadi, O.K., Grasselli, G., and Munjiza, A., “Numerical modelling of a Brazilian disc test of layered rocks using the combine definite-discrete element method,” Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto (2009).
33. Margielewski, W., “Structural control and types of movements of rock mass in anisotropic rocks: Case studies in the Polish Flysch Carpathians.” Geomorphology, Vol. 77, pp. 47-68 (2006).
34. Mellor, M., Hawkes, I., “Measurement of tensile strength by diametral compression of discs and annuli,” Engineering Geology, Vol. 5, Issue 3, pp. 173-225 (1971).
35. Nakashima, S., Taguchi, K., Moritoshi, A., and Shimizu, N., “Loading conditions in the Brazilian test simulation by DEM,” 47th U.S. Rock Mechanics / Geomechanics Symposium, San Fransico, USA, 23–26 June 2013 .Paper No. 13-515 (2013).
36. Park, B., and Min, K. B., “Discrete element modeling of transversely isotropic rock,” 47th U.S. Rock Mechanics / Geomechanics Symposium, San Francisco, USA, 23–26 June 2013 .Paper No. 13-490 (2013).
37. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” International Journal of Rock Mechanics & Mining Sciences, Vol. 41, pp. 1329–1346 (2004).
38. Stefanizzi, S., Barla, G., and Kaiser, P.K., “Numerical modeling of rock mechanics tests in layered media using a finite/discrete element approach,” International Association for Computer Methods and Advances in Geomechanics, India (2008).
39. Tavallali, A., and Vervoort, A., “Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions, "International Journal of Rock Mechanics & Mining Sciences, Vol. 47, Issue 2, pp. 313-322 (2010a).
40. Tavallali, A., and Vervoort, A., “Failure of layered sandstone under Brazilian Test conditions: effect of micro-scale parameters on macro-scale behavior, "Rock Mech. Rock Eng. Vol. 43, pp. 641-653 (2010b).
41. Tavallali, A., and Vervoort, A., “Behavior of layered sandstone under Brazilian test conditions- Layer orientation and shape effects, "International Journal of Rock Mechanics and Geotechnical engineering, Vol. 43, pp. 641-653 (2013).
42. Tien, Y.M., and Kuo, M.C., “A failure criterion for transversely isotropic rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 3, pp. 399-412 (2001).
43. Tien, Y.M., Kuo, M.C., and Juang, G.H., “An experimental investigation of the failure mechanism of simulated transversely isotropic rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 43, pp. 1163-1181 (2006).
44. Vervoort, A., Min, K.B., Konietzky, H., Cho, J.W., Debecker, B., Dan, D.Q., Ftűhwirt, T., and Tavallali, A., “Failure of transversely isotropic rock under Brazilian test conditions,” International Journal of Rock Mechanics and Mining Sciences, Vol. 70, pp. 343-352 (2014).
45. Vutukuri, V.S., Lama, R.D., and Saluja, S. S., “Handbook on Mechanical Properties of Rocks,” Vol. I (1974).
46. Yanagidani, T., Sano, O, Terada, M., and Ito, I., “The observation of cracks propagating in diametrically-compressed rock disks,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15, Issue 5, pp. 225-235 (1978).
47. Ye, J., Wu, F.Q., and Sun, J.Z., “Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads,” International Journal of Rock Mechanics & Mining Sciences, Vol. 46, Issue 3, pp. 568-576 (2009).
48. Yu, Y., Zhang, J., and Zhang, J., “A modified Brazilian disk tension test,” International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 421-425 (2009).
49. Zhu, W.C., and Tang, C.A., “Numerical simulation on of Brazilian disk rock failure under static and dynamic loading,” International Journal of Rock Mechanics & Mining Sciences, Vol. 43, Issue 2, pp. 236-252 (2006).
50. Zhong, X.P., and Wong, L. N. Y., “Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression,” International Journal of Fracture, Vol. 180, pp. 93-110 (2013).
指導教授 田永銘(Yong-ming Tien) 審核日期 2016-4-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明