博碩士論文 101327019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.145.63.95
姓名 林沂凌(Yi-ling Lin)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 平板式擴散光學斷層造影系統之乳房腫瘤檢測研究
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 乳房X光攝影(X-ray mammography)為標準乳房腫瘤篩檢及早期診斷程序,然因結構性影像限制,其仍具相當之誤判率。於90年代生醫光電領域開始發展近紅外光擴散光學斷層影像(near infrared diffuse optical tomography, NIR DOT)之功能性腫瘤檢測技術。
本研究持續發展平板式擴散光學斷層造影系統及臨床收案,採用20 MHz強度調變之830 nm波長近紅外光,且由平板上、下排列之光源及液態光導管光纖,所建構之雙向掃描裝置,透過電控平台移動,量測平板上被壓迫之仿乳房光學特性假體,並於後端頻域式光學量測系統擷取各穿透及反射光資訊,進而獲得光功率大小及相位差訊息,再透過本實驗室(中央大學D-BioM Laboratory)發展之光學係數影像重建軟體NIRFD_PC重建仿乳房假體之光學係數影像,以進行系統之效果驗證。由仿乳房假體實驗結果可知,造影系統可辨識仿體厚度及置入物大小、位置及光學對比度,而在吸收係數影像中,目前無法辨識直徑5 mm,光學對比度1.5倍以下之仿腫瘤;散射係數影像中,則無法辨識直徑15 mm,光學對比度0.89倍以下之仿腫瘤。後續在衛生福利部桃園醫院進行臨床試驗,將光學式掃描裝置安裝在乳房X光攝影機台,受檢者分別進行乳房攝影及光學式掃描,再作影像比對,以驗證本研究造影系統之適用性。由臨床試驗結果可知,對於較緻密之乳腺及脂肪等結構特性,可辨識其聚集之相對位置,且透過影像之差異,可區別出腫瘤與其他正常組織之辨識性,本次臨床試驗量得之腫瘤約為直徑15 mm以上,且皆可從吸收及散射係數影像上辨識。故若以光學斷層造影系統用於乳房篩檢,期望協助醫師診斷,提升惡性腫瘤病灶之檢知率。
摘要(英)

According to the Health Promotion Administration (HPA), the incidence rate and mortality rate of women breast cancer increase gradually in Taiwan within a decade. X-ray mammography has been used as a standard for breast screening and early diagnosis, but still exists fairly misdiagnosis rate due to the limitation of its structural images, especially for its relatively low sensitivity. Near infrared diffuse optical tomography (NIR DOT), a functional medical imaging modality, has been exploited to reconstruct optical-property images of tissues since middle 1990’s.
In this study, we developed and validated a diffuse optical imaging module with using compressive paddles of parallel scanning. The NIR DOT system deployed an intensity-modulated (at 20 MHz) laser diodes with 830 nm. The system used two parallel-paddles with dual-direction scanning modules, which measured breast-like phantoms to acquire both amplitude and phase information of out-emitted transmittance and reflection NIR in the both up-down and down-up directions. Then, to verify the system performance, we used reconstruction program, NIRFD_PC, which developed by our D-BioM laboratory to read and processed the measure data. The experiment results identified thickness of phantom and tumor-like phantom size, position and contrast of optical coefficient. For absorption coefficient image, we couldn’t identify diameter and contrast μa of tumor is less than 5 mm and 1.5 respectively. For scattering coefficient image, we couldn’t identify diameter and contrast μs‘ of tumor is less than 15 mm and 0.89 respectively. After, we conducted clinical trial with Tao-Yuan General Hospital (TYGH). We installed NIR DOT system which compatible with the apparatus of X-ray mammography to measure right and left breast of participants and compared X-ray mammography with optical coefficient image. As the result of clinical trial, our system could identify the relatively position of extremely dense glandular and adipose tissue and diameter of tumor is more than 15 mm on the absorption and scattering coefficient image. In the future, NIR DOT system is used to screen breast and may increase the rate of recognition for tumor.
關鍵字(中) ★ 近紅外光擴散光學斷層掃描
★ 平板式
★ 頻域式光學量測
★ 仿乳房光學特性假體
★ 臨床試驗
關鍵字(英) ★ near infrared diffuse optical tomography imaging
★  parallel-paddles
★  frequency domain
★  breast-mimicking phantom
★  clinical trial
論文目次

目 錄
摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 x
一、緒論 1
1-1 研究動機與目的 1
1-2 文獻探討 2
1-3 論文範疇 3
二、理論基礎 4
2-1 乳房組織光學特性 4
2-2 組織擴散光學檢測機制 8
2-3 擴散光學影像重建 10
三、平板式掃描量測系統 14
3-1 平板式掃描系統架構 14
3-1-1 掃描量測模組 14
3-1-2 掃描模組架構 16
3-1-3 系統檢測程序 17
3-2 元件與量測模組校正 18
3-2-1 元件校正 18
3-2-2 系統校正 26
3-3 仿乳房光學特性假體 27
3-3-1 仿乳假體光學特性 27
3-3-2 仿乳假體設計製作 29
四、檢測驗證與結果討論 30
4-1 仿體案例探討 30
4-1-1 光資訊擷取及資料評估方式 30
4-1-2 仿體案例 33
4-2 臨床試驗案例探討 50
4-2-1 臨床試驗流程及相關說明 50
4-2-2 臨床試驗案例 53
五、結論與未來展望 59
5-1 結論 59
5-2 未來展望 59
參考文獻 60
附錄A. 頻率與輸出幅值及相位關係 66
參考文獻

[1] IARC, “Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012,” GLOBOCAN 2012, WHO, 2015
[2] 衛生福利部國民健康署,2015年國民健康署年報,中華民國衛生福利部,第97-103頁 (2015)。
[3] 衛生福利部國民健康署,乳房(ICD-O-3 C50)於民國92-101年癌症登記年報,中華民國衛生福利部 (2003-2014)。
[4] 廖繼鼎,第三章乳房腫瘤於臨床腫瘤學,第二版,臺北市:合記圖書出版社,第97-103頁 (2010)。
[5] S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in Quantitative Oxygen-Saturation Imaging of Breast Tissue In Vivo Using Multispectral Near-Infrared Tomography,” Antioxid. Redox Signal. 9(8), 1143–1156 (2007).
[6] G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5(4), 351-363 (2006).
[7] H. Dehghani, B. W. Pogue, B. Brooksby, S. Srinivasan, and K. D. Paulsen, “Image Reconstruction strategies using dual modality MRI-NIR Data,” in 3 rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE 2006), pp. 682-685.
[8] F. S. Azar, K. Lee, A. Khamene, R. Choe, A. Corlu, S. D. Konecky, F. Sauer, and A. G. Yodh, “Standardized Platform for Coregistration of Noncurrent Diffuse Optical and Magnetic Resonance Breast Images Obtained in Different Geometries,” JBO 12(5), 051902 (2007).
[9] Q. Zhu, N. G. Chen, and S. H. Kurtzman, “Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound,” Opt. Lett. 28(5), 337-339 (2003).
[10] Q. Zhu, M. Huang, N. G. Chen, K. Zarfosy, B. Jagjivany, M. Kaney, P. Hedgey, and S. H. Kurtzmany, “Ultrasound-Guided Optical Tomographic Imaging of Malignant and Benign Breast Lesions: Initial Clinical Results of 19 Case,” Neoplasia. 5(5), 379-388 (2003).
[11] Q. Zhu, M. Xiao, S. You, J. Zhang, Y. Jiang, X. Lai, and Q. Dai, “Ultrasound-guided diffuse optical tomography (DOT) of invasive breast carcinoma: Does tumour total haemoglobin concentration contribute to the prediction of axillary lymph node status?” EJR 81(11), 3185– 3189 (2012).
[12] Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, D. A. Boas, “Coregistered tomographic X-ray and optical breast imaging:Initial results,” J. Biomed. Opt. 10(2), 024033 (2005).
[13] Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined Optical Imaging and Mammography of the Healthy Breast: Optical Contrast Derived From Breast Structure and Compression,” IEEE Trans. Med. Imaging 28(1), 30-42 (2009).
[14] P. A. Carney, D. L. Miglioretti, B. C. Yankaskas, K. Kerlikowske, R. Rosenberg, C. M. Rutter, B. M. Geller, L. A. Abraham, S. H. Taplin, M. Dignan, G. Cutter, and R. B. Barbash, “Individualand combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography,” Ann. Intern. Med. 138(3), 168-175 (2003).
[15] N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, “Mammographic density and the risk and detection of breast cancer,” N. Engl. J. Med. 356(3), 227-236 (2007).
[16] M. Herranz, and A. Ruibal, “Optical Imaging in Breast Cancer Diagnosis: The Next Evolution,” J. of Onc. 2012, 863747 (2012).
[17] M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: Initial clinical results,” PNAS 94(12), 6468–6473 (1997).
[18] American Cancer Society, "Breast Cancer," (2014).
http://www.cancer.org/cancer/breastcancer/detailedguide/index.
[19] H. Q. Woodard, and D. R. White, "The composition of body tissues," Br. j. radiol. 59(708), 1209-1219 (1986).
[20] E. Vandeweyer, and D. Hertens, "Quantification of glands and fat in breast tissue: An experimental determination," Ann Anat. 184(2), 181-184 (2002).
[21] C. Tromans, and M. Brad, “An Alternative Approach to Measuring Volumetric Mammographic Breast Density,” in IWDM 2006, S. M. Astley et al., ed., LNCS, 4046, (Springer Verlag., 2006), pp. 26-33.
[22] E. A. Sickles, C. J. D’Orsi, and L. W. Bassett et al., “ACR BI-RADS® Mammography, “ in ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston, VA, American College of Radiology, 5th Edition, 169-177 (2013).
[23] M. J. Yaffe, “Mammographic density. Measurement of mammographic density,” Breast Cancer Res. 10(3), 209 (2008).
[24] A. Pettersson, and R. M. Tamimi, “Breast fat and breast cancer,” Breast Cancer Res. Treat. 135(1), 321-323 (2012).
[25] Breastcancer.org, “Types of Breast Cancer,” (2015).
http://www.breastcancer.org/symptoms/types
[26] T. Anothaisintawee, C. W., A.Thakkinstian, C. Teerawattananon, and V. Kasamesup, “Risk prediction models of breast cancer: a systematic review of model performances,” Breast Cancer Res Treat. 133(1), 1-10 (2012).
[27] National Breast and Ovarian Cancer Centre, “Breast Condition,” Chapter 4 in Breast cancer risk factors: a review of the evidence, National Breast and Ovarian Cancer Centre (2009).
[28] L. Wang, X. L., P. Galland, P. P. Ho, and R. R. Alfano, “True scattering coefficients of turbid matter measured by early-time gating,” Opt. Lett. 20(8), 913-915 (1995).
[29] L. V. Wang, and H. I. W., “Introduction” Chapter 1 in Biomedical optics: principles and imaging, John Wiley & Sons, Inc (2007).
[30] Oregon Medical Laser Center, “Optical Properties Spectra,” (2015), http://omlc.org/
spectra/.
[31] A. Cerussi, D. H., N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” PNAS 104(10), 4014-4019 (2006).
[32] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse Optics for Tissue Monitoring and Tomography,” Rep Prog Phys. 73(7), 076701-6-7&70 (2010).
[33] B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4(8), 270-286 (1999).
[34] H. C. Chiang, J. M. Yu, L. Y. Chen, M. Cheng Pan, S. Y. Sun, C. C. Chou, and M. Chun Pan, “Mammogram Based Diffuse Optical Tomography,” Proc. SPIE 8216(Multimodal Biomedical Imaging VII), 821607 (2012).
[35] J. M. Yu, L. Y. Chen, H. C. Chiang, M. Cheng Pan, S. Y. Sun, C. C. Chou, and M. Chun Pan, “Parallel Scanning Architecture for Mammogram-Based Diffuse Optical Imaging,” J. Med. Device. 7(2), 020936 (2013).
[36] R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med Phys. 32(4), 1128-1139 (2005).
[37] B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chanc, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 54(4), 837–859 (2008).
[38] M. Chun Pan, C. H. Chena, M. Cheng Pan, and Y. M. Shyr, “Near infrared tomographic system based on high angular resolution mechanism – Design, calibration, and performance,” Measurement 42(3), 377–389 (2009).
[39] Hamamatsu Photonics K.K. Electron Tube Division, Photomultiplier Tubes: Construction and Operating Characteristics Connections to External Circuits (Hamamatsu Photonics K.K., 1998).
[40] Hamamatsu Photonics K.K. Electron Tube Division, Photomultiplier Tube Modules (Hamamatsu Photonics K.K., 2015), pp. 24-25.
[41] F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, "Refractive index of some mammalian tissues using a fiber optic cladding method," Appl. Opt. 28(12), 2297-2303 (1989).
[42] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20(21), 2258-2260 (1995).
[43] B. W. Pogue, and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11(4), 041102 (2006).
[44] G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm to 200 µm wavelength region," Appl. Opt. 12(3), 555-563 (1973).
[45] B. A. Brooksby, “Phantom design,” Chapter 5 in Combining near infrared tomography and magnetic resonance imaging to improve breast tissue chromophore and scattering assessment, Dartmouth College, 85-93 (2005).
[46] 王甄、施庭芳,乳房影像學-基礎與實際應用,初版,台北市:國立台灣大學醫學院 (2009)。
[47] C. E. Mercer, C. A. Hill, A. Kelly, and H. L. Smith, “Practical Mammography” in Digital Mammography: A Holistic Approach, R. Hogg et al., ed., Springer International Publishing, 175-188 (2015).
[48] 溫佳瑩,MAMMOGRAPHY入門簡介,彰化基督教醫院。
[49] E. A. Sickles, C. J. D’Orsi, and L. W. Bassett et al., “ACR BI-RADS® Mammography,“ in ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston, VA, American College of Radiology, 5th Edition, pp. 180-212 (2013).
[50] J. B. Fishkin, and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” Opt. Soc. Am. A 10(1), 127-140 (1993).
[51] S. L. Jacques, and B. W. Pogue, “Tutorial on diffuse light transport,” J Biomed. Opt. 13(4), 041302 (2008).
指導教授 潘敏俊 審核日期 2016-3-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明