以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:28 、訪客IP:18.119.122.140
姓名 鄧聖龍(Sheng-long Teng) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
(Guided-to-radiation polarization mode conversion in electro-optic PPLN APE waveguides)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 波導振幅調制器為光通訊、波導雷射中具有重要應用價值的元件。本研
究是在z 切面( z-cut )鈮酸鋰( LiNbO3 )基板上製作退火式質子交換波導
( Annealed Proton Exchange waveguide,簡稱APE 波導 ),利用APE 波導只
能傳播TM 模態的傳播特性,再利用週期性極化反轉鈮酸鋰( PPLN )的準相
位匹配技術作電光調制,將波導TM 模態的能量偶合至APE 波導無法傳播
的TE 波,形成TE 波的能量損耗,使得TM 模態無法獲得TE 波的能量回饋,
因此可以在APE 波導上達到TM 模態的振幅調制功能。
本研究的工作波長設計在通訊波段( 1550nm ),波導寬度設計為12μm,
深度4.07μm,週期性極化反轉結構則是利用索爾克( Solc filter )濾波器[6]的
半波板概念並設計三種週期作比較,分別是23.7μm、24μm、24.3μm。當
外加工作電壓250V,TM 模態可以達到帶寬80nm,大於50%的能量損耗,
而在能量轉換效率最好的波長更可得到大於70%以上的能量損耗。
在經過模擬分析之後,我們可以估計TE 波在傳播的損耗約在0.07dB/
μm ~ 0.09dB/μm,而製程上週期設計的可容忍誤差更可以達到2μm。摘要(英) Waveguide amplitude modulator is essential device of optical communication.
We designed and fabricated the annealed proton exchange waveguide ( APE
waveguide ) on z-cut lithium niobate ( LiNbO3 ) substrate. According to former
research, we knew that APE waveguide can only guide TM polarized mode. We
used these properties of APE waveguide and periodic poled lithium niobate
( PPLN ) quasi-phase matching technique to achieve electro-optic modulation.
Our main purpose is transforming the guided energy of TM mode to TE unguided
radiation wave via PPLN electro-optic modulation. The energy coupled to TE
unguided wave has energy loss and the TM guided mode can’t acquire the energy
feedback from TE wave, therefore we can accomplish amplitude modulate in
APE waveguide.
We design the device at the wavelength of telecommunication ( 1550nm ), the
channel opening and waveguide depth is 12μm and 4.07μm. The period design
of PPLN is base on the concept of half wave plate in “Solc filter[6]’’. In order to
compare the experimental result, we design three different period in this device :
23.7μm, 24μm , and 24.3μm . When applied external voltage at 250V, the loss
of TM mode is more than 50% and the spectral bandwidth is about 80nm.
Additionally, the loss of TM mode is more than 70% near the phase match
wavelength.
According to the computational modeling, we estimate the loss of TE wave is
about 0.07dB/μm ~ 0.09dB/μm, and the fabrication process of period tolerance
is about 2μm.關鍵字(中) ★ 波導
★ 極化反轉
★ 質子交換
★ 鈮酸鋰關鍵字(英) ★ LiNbO3
★ waveguide
★ APE
★ PPLN論文目次 第 一 章 緒 論.................................................................................................. 1
1-1 積體光學波導簡介................................................................................ 1
1-2 研究動機................................................................................................ 2
1-3 內容概要................................................................................................ 2
第 二 章 理 論.................................................................................................... 3
2-1 鈮酸鋰晶體的電光效應........................................................................ 3
2-2 極化反轉鈮酸鋰波導電光調制原理.................................................... 8
第 三 章 質子交換波導.................................................................................... 14
3-1 質子交換波導簡介.............................................................................. 14
3-2 退火式質子交換波導理論.................................................................. 15
3-3 退火式波導模型建立.......................................................................... 18
第 四 章 元件製程............................................................................................ 20
4-1 周期性極化反轉結構的製作.............................................................. 20
4-2 波導的製作.......................................................................................... 24
第五章 實驗量測結果...................................................................................... 30
5-1 波導特性量測...................................................................................... 30
5-2 波導電光調制特性量測與模擬分析比較.......................................... 34
第 六 章 結論與未來展望................................................................................ 49
6-1 結論........................................................................................................ 49
6-2 未來展望................................................................................................ 50
參考文獻............................................................................................................ 51
附 錄..................................................................................................................... i
A-1 相關製程參數.......................................................................................... i
A-2 溫度、波長對等效折射率之關係式..................................................... ii參考文獻 [1]. S. E. Miller, ”Integrated Optics : an introduction,” Bell.
Syst.Tech.J.,48,p2059-2069(1969).
[2]. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index
waveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608 (1982).
[3]. Y. Kondo, S. Miyaguchi, A. Onoe, and Y. Fujii, “Quantitatively measured
photorefractive sensitivity of proton exchanged lithium niobate, proton
exchanged magnesium oxide doped lithium niobate, and ion exchanged
potassium titanyl phosphate waveguides,” Appl. Opt. 33, p3348–3352
(1994).
[4]. J. Manuel, and M. M. de Aelmeda, “Design methodology of annealed H+
waveguides in ferroelectric LiNbO3”, Optical. Engineering., 16, p.1844-1846
(1991).
[5]. X. F. Cao et al. ” Characterization of Annealed Proton Exchanged LiNbO3
Waveguides for Nonlinear Frequency Conversion ”, J. Light. Tech., 10,
p1302-1313 (1992).
[6]. A. Yariv and P. Yeh, “Optical Waves in Crystal: propagation and control of
laser radiation,” John Wiley & Sons, New York (1984).
[7]. 黃俊育,”主動式多通道窄頻寬通Ti:PPLN 波導濾波以及模態轉換器究”
中央大學碩士論文,DOP (2006).
[8]. Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram of
HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural
Properties,” IEEE J. Quantum Electronics., 2, p187-196 (1996).
[9]. 余兆陞,”以鎂摻雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究”中
央大學碩士論文,DOP (2008).
[10]. M. L. Bortz, and M. M. Fejer, “annealed proton-exchanged LiNbO3
waveguides”, Opt. Lett., 16, p.1844-1846 (1991).
[11]. 江羿凡,”非對稱之週期反轉鈮酸鋰光波導頻譜調變之研究”清華大學碩
論文,電機系光電組 (2005).
[12]. D. Marcuse, “Optimal electrode design for integrated optics modulators,”
IEEE J. Quantum Electronics, 18, p393-398 (1982).
[13]. G. D. Miller, ” Periodically poled lithium niobate : modeling,fabrication,and
nonlinear-optical performance”美國史丹佛大學博士論文,電機系(1998).
[14]. Sandeep T. Vohra, Alan R. Mickelson, and Sally E. Asher, ”diffusion
characteristics and waveguiding properties of proton-exchanged and
annealed LiNbO3 channel waveguides”, J. Appl. Phys. 66, p.5161-5174
(1989).
[15]. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical
waveguide resonators,” Appl. Phys. B, 36, p143-147 (1985).
[16]. K. S. Chiang, “Construction of refractive index profiles of planar dielectric
waveguides from distribution of effective indexed,” J. Lightwave Technol.,
LT-3, 2, p385-391 (1985).
[17]. E. Lallier, J. P. Pocholle, amd M. Papuchon “Nd:MgO:LiNbO3 waveguide
laser and amplifier” Opt. Lett., 15, p682-684 (1990).
[18]. E. Cantelar, M. Quintanilla, M. Domenech, G. Lifante, “Modelling of laser
operation in RPE Nd3+:LiNbO3 channel waveguides” Opt. Lett., 15,
p682-684 (1990).
[19]. A. Loni, R. M. De La Rue, and J. M. Winfield, “Proton exchanged, lithium
niobate planar optical waveguides: chemical and optical properties and
room temperature hydrogen isotopic exchange reactions,” J. Appl. Phys. 61,
64–67 (1987).
[20]. J. Cabrera, J. Olivarest, M. Carrascosa, J. Rams, R. Muller, and E. Diéguez,
“Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[21]. E. Hecht, “Introduction of Optics,”4th Ed, Addison Wesley, p402 (2002).指導教授 陳彥宏(Yen-hung Chen) 審核日期 2008-7-21 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare