博碩士論文 952206055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.143.214.226
姓名 林宏儒(Hung-Ju Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 含氫矽薄膜太陽電池材料之光電特性研究
(Photonic and Electric Properties of Hydrogenated Silicon Thin Films)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對太陽能電池之本質矽薄膜層,其製程係以物理氣相沉積法之
脈衝直流磁控濺鍍系統,在不同通氫量條件下製備,並觀察分析和討論其
光電特性,如光學吸收係數、光學能隙、膜內矽氫及矽氧鍵結、氫原子含
量比例及材料的光學常數等,且分析不同通氫量製鍍條件之下對於光電特
性的影響。
由於矽薄膜有明顯光學干涉現象,在光學吸收係數的分析上易受干擾,
因此引入多光束干涉的理論做相關吸收係數的模擬,以求得近似實際吸收
係數的值。另外,本論文探討含氫矽薄膜材料之光學能隙的大小,在非晶
態時,隨通氫量增加而增加,經分析發現內部孔隙產生的結構改變是造成
上述結果的可能原因。而在分析矽薄膜材料於近紅外區的吸收趨勢,我們
架設一套常數光電流量測系統,來量測並分析薄膜中關於缺陷影響及能隙
等重要訊息,如非晶矽的缺陷密度特性以及微晶態的實際能隙值之求得,
並將以上結果做相關的比較和分析。
摘要(英) In this article, we discuss our research regarding the intrinsic layer of solar
cells. In this study we utilized pulsed DC magnetron sputtering for the PVD
fabrication process as this was the more environmentally sound method. We
looked at the relationship between the photonic properties and the hydrogen
flow adjusting the amount of hydrogen flow. For example, the absorption
coefficient of the materials, optical band gap, optical constants, bonding
characteristics and even the percentage of hydrogen atom in the thin films were
all subjects of interest.
Due to interference effect in silicon thin film, we applied the multiple-beam
interference theory into simulations for getting the nearly realistic absorption
coefficients. Then we not only obtained optical absorption coefficients that were
quite close to their actual value, but also gave attention to and discussed some
theoretical reasons regarding the optical band gap shifting results. For example,
silicon during in amorphous type had the increasing optical band gap when
raising hydrogen flow. And we deduced the possible reason that structural
variation of silicon thin film affected by voids. Moreover, we set up a system
using the constant photocurrent method to analyze the absorption trend of the
intrinsic silicon thin film in the infrared region. Additionally we discussed
important analyses and comparisons regarding the effects of potential defects
and the optical band gap of silicon film as a whole as shown by the measuring
system, for example, defect density of amorphous silicon film and actual optical
band gap of microcrystalline silicon film would also be realized via the method.
關鍵字(中) ★ 常數光電流量測
★ 光電特性
★ 含氫矽薄膜材料
關鍵字(英) ★ constant photocurrent method
★ Hydrogenated silicon thin film
★ Photonic and electric properties
論文目次 Contents
摘要..I
Abstract..II
Table of Contents..III
Figures..VI
Tables..IX
Chapter1 Introduction..1
1-1 Preface..1
1-2 Literature review..2
1-3 Research motivation..3
Chapter2 Basic Theories and Concepts..4
2-1 Development and historical costs of silicon solar cells..4
2-1-1 Theorem of photoelectric transformation..6
2-1-2 Potential of silicon thin film solar cells..7
2-1-3 Hydrogenated silicon thin film solar cells..8
2-2 Optical absorption and absorption coefficient..9
2-2-1 Absorption coefficient from transmittance..10
2-2-2 Interference-free absorption coefficient theory..10
2-3 About the optical band gap..12
2-3-1 Meaning and applications..12
2-3-2 Mechanisms for direct and indirect transitions..13
2-3-3 Analyzing models of the optical band gap..15
Chapter 3 Experimental Instruments and Methods..16
3-1 Fabrication technique instruments-DC pulse magnetron sputtering..16
3-2 Analytical instruments..17
3-2-1 HITACH U-4100 Spectrophotometer..17
3-2-2 Fourier Transform Infrared Spectroscopy (FTIR)..18
3-2-3 Raman Spectroscopy..19
3-2-4 Spectroscopic Ellipsometry..20
3-3 Constant Photocurrent Method (CPM)..21
3-3-1 Operating methods and applications..21
3-3-2 System frame and related components..22
3-4 Experimental steps and methods..23
Chapter 4 Experimental Results and Discussion..26
4-1 Analyses of the absorption coefficients of intrinsic silicon films..26
4-1-1 Absorption coefficients measured from the transmittance..26
4-1-2 Simulations and comparisons of interference-free absorption coefficients..27
4-1-3 Comparison of different amounts of hydrogen flow versus the absorption coefficient of the materials..33
4-2 Discussion of the optical band gaps of intrinsic silicon films..35
4-2-1 Analysis of the optical band gaps by the Tauc method..36
4-2-2 Analysis of the optical band gaps by the Klazes method..37
4-2-3 Comprehensive discussion and analyses..40
4-3 Fourier- transformed infrared transmittance spectroscopic analysis..41
4-3-1 Characteristics of the silicon to hydrogen bonds..41
4-3-2 Effect of the silicon to oxygen bonds at the film surface..43
4-4 Analyses of the ratio of crystallinity by Raman Spectroscopy..44
4-5 Analyses of the percentage of hydrogen atoms in silicon films..45
4-6 Analyses of refractive indices through ellipsometry..46
4-6-1 Changing the refractive indices by varying the hydrogen flow..47
4-6-2 Analysis and discussion of the refractive indices at specific wavelengths..49
4-7 Analysis of silicon thin films via the CPM system..52
4-7-1 Relative absorption capacity of silicon thin films..53
4-7-2 Analyses of optical band gaps in hydrogenated silicon films..57
1. Analyses of optical band gaps via a spectrometer..57
2. Analyses of optical band gaps via the CPM system..59
Chapter5 Conclusions..62
Future Work..65
References..66
參考文獻 [1] S. Klein, T. Repmann, and T. Brammer, "Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD", solar energy , 77 , pp. 893-908 (2004).
[2] 高正雄編著,電漿化學,復漢出版社,2-4 (1999)
[3] 蘇韋寧,以脈衝直流磁控濺鍍法製作含氫非晶矽薄膜於太陽電池之應用,中央光電所碩士論文(2007)
[4] Brendel, Rolf, Thin-film crystalline silicon solar cells : physics and technology / Brendel Rolf ; with a foreword of A. Goetzberger, Weinheim : Wiley-VCH, c2003
[5] Yoshihiro Hishikawa, Noboru Nakamura, Shinya Tsuda, “Interference-Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films”, Jpn. J. Appl. Phys. Vol 30, No 5, May , pp.1008-1014 (1991)
[6] Yue Kuo, Thin Film Tansistors-Material and Processes, volume 1, Texas A&M University, U.S.A., 2004
[7] J. Tauc, Amorphous and Liquid Semiconductors, Plenum Publishing Company Ltd (1974)
[8] Klazes, R.H., M.H.L.M. van den Broek, J. Bezemer, and S. Radelaar, “Detremination of the optical band gap of amorphous silicon“, Phil. Mag. B 45 (1982) 377-383
[9] G. Moddel, D.A. Anderson, and William Paul, “Derivation of the low-energy optical-absorption spectra of a-Si:H from photoconductivity”, PHYSCAL REVIEW B 22, number 4 (1980)
[10] M. Sasaki, S. Okamoto, Y. Hishikawa, S. Tsuda, and S. Nakano,”Chacteristization of the defect density and band tail of a-Si:H intrinsic layer for solar cells by improved CPM measurement”, Sol. Energy Mater. Sol. Cells 34, 541 (1994)
[11] D. Ritter and K. Weiser, “Suppression of interference fringes in absorption measurements on thin films”, Optics Communications 57, number 5, 336-338 (1986)
[12] F. Demichelis, G. Kaniadakis, A. Tagliaferro, and E. Tresso,” New approach to optical analysis of absorbing thin solid films”, APPLIED OPTICS Vol. 26, No. 9 (1987)
[13] Sukriti Ghosh, Abhijit De, “Role of hydrogen dilution and diborane doping on the growth mechanism of p-type microcrystalline silicon films prepared by photochemical vapor deposition” J. Appl. Phys., Vol. 71, No. 10 (1992)
[14] Wenhui Dua*, Xianbo Liaoa, Xiesen Yanga, “Hydrogenated nanocrystalline silicon p-layer in amorphous silicon n–i–p solar cells”, Solar Energy Materials & Solar Cells 90 (2006) 1098–1104
[15] Ing-Shin Chen, Taraneh Jamali-beh, Yeeheng Lee, “Mobility and Optical Gaps in Different a-Si:H Based Materials and Their Impact on Cell Performance”, First WCPEC; Dec. 5-9, 1994
[16] Richard M. Swanson, ” Developments in Silicon Solar Cells”, 2007 IEEE
[17] Jenny Nelson, THE PHYSICS OF SOLAR CELLS, Imperial College Press, 2003
[18] Greg P. Smestad, Optoelectronics of Solar Cells, SPIE PRESS, 2002
[19] 李正中, 薄膜光學與鍍膜技術, 台北, 藝軒出版社(第五版), 2006
[20] Donald A. Neamen, An Introduction to Semiconductor Devices, McGraw-Hill Company, Inc, 2006
[21] A.V. Shah*, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, ” Material and solar cell research in microcrystalline silicon”, Solar Energy Materials & Solar Cells 78 (2003) 469–491
[22] Peter Wurfel, Physics of Solar Cells from Principles to New Concepts, Wiley-VCH Verlag GmbH, 2005
[23] Tom Markvart and Luis Castaner, Solar Cells: Materials, Manufacture and Operation, Elsevier Advanced Technology, The Boulevard, Langford Lane, 2005
[24] 楊錦章譯, 基礎濺鍍電漿, 電子發展月刊, 第68 期, 13 (1983)
[25] 陳陵援、吳慧眼, 儀器分析, 三民書局, 99 (2002)
[26] J. M. Seo, M. C. Jeong, and J. M. Myoung, "Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering," J. Cryst. Growth (2006)
[27] 汪建民, 材料分析, 中國材料科學學會, 台灣, 1998
[28] M. Vaneceka) and J. Kocka, “Direct measurement of the deep defect density in thin amorphous siliconfilms with the “absolute” constant photocurrent method”, J. Appl. Phys. 78 (l0) (1995)
[29] S. C. Saha, A. K. Barua and S. Ray, “The Role of Hydrogen Dilution and Radio Frequency Power in the Formation of Microcrystallinity of n-type Si:H Thin Films”, J. Appl. Phys., 74, 5561 (1993)
[30] Ruud E.J. Schropp and Miro Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology, Kluwer Academic Publishers, 1998
[31] J. Mullerova a,*, S. Jurecka a, P. Sutta b, “Optical characterization of polysilicon thin films for solar applications”, Solar Energy 80 (2006) 667–674
[32] Shoji Furukawa and Tatsuro Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H”, PHISCAL REVIEW B Volume 38, number 8 (1998)
[33] M. R. Esmaeili-Rad A A. Sazonov A A. G. Kazanskii. “Optical properties of nanocrystalline silicon deposited by PECVD”, J Mater Sci: Mater Electron 18:S405–S409 (2007)
指導教授 陳昇暉、李正中
(Sheng-Hui Chen、Cheng-Chung Lee)
審核日期 2008-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明