博碩士論文 952906007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.142.200.102
姓名 許正達(Jheng-Da Syu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 奈米材料應用在散熱技術設計與量測
(Application of nano-materials in techniques of thermal dissipation design and measurement)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要在發展奈米材料應用在散熱技術之設計方法,由於傳統的量測方法無法非破壞性直接測量晶片內層溫度,而且紅外線熱像儀所測得之溫度只能一個局部表面溫度,不易得知晶片內層實際的溫度,本論文提出經由材料的熱傳導係數或者材料特性來計算出內部晶片溫度。量測方法為使用熱傳導原理以及等溫度曲線的特性,轉換等效電路方法計算出LED內部的實際溫度分佈,在恆溫裝置的環境下量測以提高準確度,由數位電源供應器提供電壓及電流,用熱電偶搭配NI CompactDAQ資料截取器長期取得多點電壓值,然後將數據記錄至 LabVIEW圖形化程式設計平台,以自己撰寫的LabVIEW程式將數據轉換成攝氏溫度並記錄,可簡化大量的運算過程以及計算的誤差。
由實驗可知,同樣時間內,液態奈米散熱材料與銀膠溫度相差約2℃,和粉狀奈米散熱材料溫度相差約4℃,所以液態奈米散熱材料有良好的傳導性及對流效果強,而粉末奈米材料因呈現不規則排列,導致傳導效果差,銀膠雖然傳導性佳,但無法液態化對流傳熱。最後,運用液態奈米散熱材料特性,並將它做為傳熱載子是一大突破,且液態奈米散熱材料對流效果強、傳熱性能良好,故可增加LED的傳熱效果。
液態奈米材料搭配本論文所提之監測系統不但能提升熱傳導性能、增加熱傳導系數、成本降低、亦能直接計算出內部晶片溫度。未來可以發展成3D的溫度量測系統,應用在封裝IC業。並證實了本系統在結合熱傳導理論、材料特性後確實可以得到內部晶片實際溫度,也將系統升級成一套誤差小、快速計算溫度的量測系統。
摘要(英) This thesis is mainly focused on developments of new technology of thermal dissipation design and measurement using nano-materials, as traditional methods of temperature measurement are not direct non-destructive ways measuring the inner temperature of the chip, and it’s not easy to know the real inner chip temperature using infra-red thermal imager since only temperature of partial surface can be measured. In this thesis we put forward a new method to calculate the internal chip temperature via thermal conductivity or property of materials. The actual internal LED temperature distribution is calculated by using of heat transfer principles such as characteristics of isothermals, as well as conversion to the equivalent circuit. Experimental data are measured in constant temperature environment to improve the accuracy of measurements. Voltages and currents are provided via the digital power supply. Long-term multi-point voltages values are recorded via thermocouple combined with NI CompactDAQ data interceptor, and then are inputted to a LabVIEW graphical programming platform and are finally converted to Celsius temperature data with a LabVIEW program developed by the author which simplifies the process of complex computing as well as reduces the calculation error.
During the experiment of the effect of thermal dissipation, we found that within the same period of cooling time, liquid nano- materials are better than silver conductive plastics by a temperature difference of about 2℃, and better than nano-powder materials by a temperature difference of about 4℃. So the liquid nano-materials are with better heat conductivity and convection, and nano-powder materials are with poorer performances as a result of irregular arrangement. Although silver conductive plastics are good in heat conductivity, they are poorer in heat convection. It’s a major breakthrough in nano-technology using nano-liquid materials as the heat carriers to increase the effect of heat dissipation of LED.
Nano-liquid materials with the temperature monitoring system mentioned above will not only enhance the heat transfer performance, increase the thermal conductivity, lower the costs, but can also directly calculate the internal chip temperature. This technique can be developed into a 3D temperature measurement system used in IC packaging industry in the future. We also confirmed that the actual temperature within the chip can be measured by the combination of heat transfer theory and the material properties. This system will be upgraded into a small error, rapid calculation system of the temperature measurement.
關鍵字(中) ★ LED
★ 熱傳導
★ 奈米材料
★ 對流
關鍵字(英) ★ LED
★ Nano- materials
★ Convection
★ Heat transfer
論文目次 中文摘要 i
Abstract iii
誌謝 vi
目錄 vii
圖目錄 x
表目錄 iii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 研究目的與方法 9
1-4 文獻回顧 10
1-4-1 散熱技術方面 11
1-4-2 量測溫度方面 12
1-5 論文架構 14
第二章 發光二極體與奈米碳管介紹 16
2-1 發光二極體介紹 16
2-1-1 發光二極體工作原理 17
2-1-2 發光二極體封裝演進 19
2-1-3 發光二極體散熱模式 20
2-2 白光發光二極體 24
2-2-1 白光發光二極體發光技術 25
2-2-2 白光發光二極體散熱問題 27
2-3 奈米碳管 28
2-3-1 奈米碳管結構及性質 29
2-3-2 奈米碳管熱學性質 31
第三章 LED的散熱計算 32
3-1 熱傳遞理論 32
3-1-1 熱傳導 32
3-1-2 熱對流 35
3-1-3 輻射冷卻 37
3-2 等溫度特性曲線 39
3-3 等效電路計算方法 41
3-4 發光二極體發光效率 46
第四章 實驗方法及設備 47
4-1 實驗方法 47
4-2 實驗設備 50
4-2-1 電源供應器 50
4-2-2 恆溫裝置 50
4-2-3 積分球 51
4-2-4 三角量測系統 52
4-2-5 溫度自動擷取記錄系統 53
4-2-6 熱電偶 55
4-2-7 恆流電路 55
4-3 實驗材料 56
4-3-1 晶片 56
4-3-2 固晶銀膠 57
4-3-3 奈米碳管 57
4-3-4 封裝膠 59
4-3-5 散熱基板 59
4-4 量測參數設定 60
4-5 實驗流程 62
4-5-1 LED封裝流程 62
4-5-2 量測LED結構厚度流程 63
4-5-3 量測不同材料溫度紀錄流程 63
4-5-4 計算LED內部溫度分布流程 64
第五章 結果與討論 66
5-1 量測結果 66
5-2 轉換等效電路 79
5-3 等溫度曲線繪製 81
第六章 結論 84
參考文獻 87
參考文獻 1. LUMILEDS,「利用Luxeon高功率光源的熱設計」,應用摘要AB05
2. 黃振東:HB LED散熱基板之發展現況及趨勢。取自telnet://PTT.CC。
3. 浩鑫(shuttle)。取自http://geekspeak.org/
4. Best Manufacturing Practices。取自http://www.bmpcoe.org/
5. S. Bhattacharyya, A. Peterson,“Corona Wind-AugmentedNatural Convection - Part 1: Single Electrode Studies,” Journal ofEnhanced Heat Transfer, Vol. 9, pp. 209-219,(2002).
6. Zetao Ma,Xiaojun Wang,Daqing Zhu,and Sheng Liu, “Thermal analysis and modeling of LED arrays integrated with an innovative liquid-cooling module”6th International Conference on Electronic Packing Technology,(2005).
7. Mehmet Arik, Stanton Weaver, “Effect of chip and bonding defects on the junction temperatures of high-brightness light-emitting diodes” Optical Engineering 44_11_, 111305 (November 2005).
8. Jen-Hau Cheng, Chun-Kai Liu, Yu-Lin Chao, Ra-Min Tain“Cooling performance of silicon-based thermoelectric device on high power LED” International Conference on Thermoelectrics(2005)
9. S. Chhajeda, Y. Xib, Th. Gessmanna, J.-Q. Xib, J. M. Shaha, J. K. Kima, and E. F. Schuberta,b“Junction temperature in light-emitting diodes assessed by different methods” Proc. of SPIE Vol. 5739(2005).
10. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Mukai,“Superbright Green InGaN Single-Quantum-Well-Structure Light-EnmittingDiodes,"Jpn. J. Appl. Phys. vol.34, pp.L1332-L1335, 1995.
11. 黃秉鈞,「高亮度LED照明時代來臨推動能源節約」,台大校訊862號專題報導 (2006)。
12. 光電科技工業協進會,「2000年白光LED照明暨技術動向分析」pp.3-4, 2001。
13. 光電科技工業協進會,「21世紀白光LED照明產業推動小組」。
14. 孫允武:二極體原理。取自 http://www.quatek.com.tw/service/application/pn%A4G%B7%A5%C5%E9%C2%B2%A4%B6.pdf
15. 施敏,半導體元件物理與製作技術,黃調元譯,初板,新竹市,交大出版社,民91。
16. 劉如熹,王健源,白光發光二極體製作技術:21世紀人類的新曙光,初版,全華圖書股份有限公司,民90。
17. Arik, M. Petroski, J. Weaver, S.,“Thermal challenges in the future generation solid state lighting applications: light emitting diodes"IEEE Xplore,p113-120,2002.
18. 蘇晉鋒:科技新知:半導體照明所引發的LED封裝技術之爭(上)。取自http://www.fpd.edu.tw/newsDetail.do?id=1358
19. 工業技術研究院光電工業研究所。
取自http://newwww.itri.org.tw/adjustment.asp
20. 史光國,半導體發光二極體及固體照明,初版,臺北市,全華圖書有限公司,2005。
21. Frank Wall, Paul S. Martin, and Gerard Harbers“High-power LED package requirements”Proc. SPIE 5187, 85 (2004)
22. Adel S. Sedra Kenneth C. Smith,微電子電路(上冊),曹恆偉和林浩雄翻譯,四版,臺北市,台北圖書有限公司,民88二刷。
23. LEDinside:淺談LED封裝技術。取自http://www.ledinside.com/en/led_packaging
24. 謝謙明:LED光源應用於照明器材。取自http://www.abctwn.com.tw/news/c04-1.pdf
25. Lumileds product application brief AB23,“Thermal Design Considerations for Luxeon 5 Watt Power", (2002)。。
26. S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991) 56.
27. P.Collins and P.Avouris,“Manotubes for electronics",Scientific American,62,2000.
28. 朱屯,王福明,王習東等,奈米材料技術,初版,臺北市,五南圖書股份有限公司,2003。
29. 盧永坤,奈米科技導論,初版,臺中市,滄海書局,民94。
30. Jerry Sergent,Al Krum,THERMAL MANAGEMENT HANDBOOK,McGraw-Hill Companies,1998。
31. Yunus A. Cangel,熱傳遞(上),牛仰堯等譯,初版,臺北市,美商麥格羅.希爾股份有限公司,2000。
32. F.P.lncropera,D.P.DeWitt,T.L.Bergman,A.S.Lavine,Fundamentals of Heat and Mass Transfer ,John Wiley,2007.
33. E. Fred Schubert,Light-emitting diodes ,second edition,Rensselaer Polytechnic Institute, New York,2006.
34. Se Young Yang, Ilho Kim, and Soon-Bok Lee, “A Study on the Thermal Fatigue Behavior of Solder Joints Under Power Cycling Conditions",IEEE,VOL. 31, NO. 1, MARCH ,2008.
35. Po Han Chen, Ching Liang Lin, Y. K. Liu, Te Yuan Chung, and Cheng-Yi Liu“Diamond Heat Spreader Layer for High-Power Thin-GaN Light-Emitting Diodes"IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 10, MAY 15, 2008.
36. Shunsuke Fujita, Akihiko Sakamoto, and Setsuhisa Tanabe“Luminescence Characteristics of YAG Glass–Ceramic Phosphor for White LED"IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008.
37. Simone Buso, Member, IEEE, Giorgio Spiazzi, Member, IEEE, Matteo Meneghini,and Gaudenzio Meneghesso, Senior Member, IEEE “Performance Degradation of High-Brightness Light
Emitting Diodes Under DC and Pulsed Bias"IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 8, NO. 2, JUNE 2008.
38. Sunho Jang and Moo Whan Shin, Member, IEEE “Thermal Analysis of LED Arrays for Automotive Headlamp With a Novel Cooling System"IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 8, NO. 3, SEPTEMBER 2008.
指導教授 張榮森(Rong-Seng Chang) 審核日期 2009-2-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明