博碩士論文 962206045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.147.80.39
姓名 林詩敏(Shih-min Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 Si-rich SiOx光子晶體結構之研究
(Study of Si-rich SiOx Photonic Crystal Structure)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文,我們利用Si-rich SiOx發光材料來進行光子晶體雷射的研究,以期能實現整合於基板上的矽基雷射。透過平面波展開法(PWE)與時域有限差分法(FDTD)的模擬計算後,我們得知對於Si-rich SiOx這樣低折射率的材料所製造出的光子晶體結構,可以透過增加作用層的膜厚與空氣孔洞分布的範圍來達到良好的光子侷限,模擬上的Q值可達13114,顯示此材料在光子晶體雷射方面擁有應用的潛力。另外,我們也實際利用光激發光(PL)量測系統量得Si-rich SiOx薄膜的發光波長於680nm,並透過電子束微影技術(E-beam Lithography)於薄膜上製作出光子晶體的結構。未來我們將去除樣品中的矽基板,避免激發出的光子被矽基板所吸收,並在結構中製作出良好的電極來獲得電激發光(EL)的Si-rich SiOx光子晶體雷射。
摘要(英) In this thesis, we study the photoluminescence (PL) of Si-rich SiOx materials and try to realize the Si-based photonic crystal laser. The theoretical simulation results obtained by plane wave expansion (PWE) and finite-difference time-domain (FDTD) methods show that the Q-factor can attain to 13114 in Si-rich SiOx photonic crystal structure with low refractive index by means of increasing the thickness of the active layer and modifying the distribution of the air holes to achieve well photon confinement. This result reveals the potential in realization of Si-based photonic crystal laser. The central wavelength of the measured PL spectrum of the sample is 680nm from the Si-rich SiOx film. We fabricate photonic crystal structure on this film using E-beam lithography. In the future, we will remove the Si substrate in order to avoid the absorption of the emitted photons and design the electrodes to carry out electrically pumped Si-rich SiOx photonic crystal lasers.
關鍵字(中) ★ 光子晶體雷射
★ 矽奈米晶粒氧化矽
★ 品質因子
關鍵字(英) ★ Photonic crystal laser
★ Si-rich SiOx
★ Quality factor
論文目次 摘要 I
Abstract II
目錄 V
圖目錄 VIII
表目錄 XII
第1章 緒論 1
1.1 光子晶體簡介 1
1.2 光子晶體雷射發展 5
1.3 Si-rich SiOx材料簡介 13
1.4 研究動機 14
1.5 結論 15
第2章 基本原理 16
2.1 平面波展開法(Plane Wave Expansion , PWE) 16
2.2 時域有限差分法(Finite-Difference Time-Domain , FDTD) 18
2.3 Q值(Quality factor)計算方法 22
2.4 結論 25
第3章 光子晶體結構設計與模擬 27
3.1 Si-rich SiOx光子晶體能帶結構計算 27
3.2 Si-rich SiOx光子晶體共振腔 30
3.2.1 Si-rich SiOx光子晶體共振腔結構設計 30
3.2.2 光子晶體共振腔之共振頻率與缺陷模態 32
3.2.3 Si-rich SiOx光子晶體共振腔Q值計算 35
3.3 模擬結果與討論 43
3.4 結論 47
第4章 Si-rich SiOx光子晶體元件製程與量測 49
4.1 光激發光(photoluminescence, PL)原理 49
4.2 Si-rich SiOx薄膜的光學量測—PL 50
4.3 Si-rich SiOx光子晶體結構製作 52
4.4 Si-rich SiOx光子晶體結構的光學量測—m-PL 55
4.5 結果與討論 56
4.6 結論 58
第5章 結論與未來展望 60
參考文獻 62
參考文獻 [1] 欒丕剛, 陳啟昌, 光子晶體--從蝴蝶翅膀到奈米光子學, 第二版, 五南圖書出版股份有限公司, 2006.
[2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2059, 1987.
[3] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, no. 23, pp. 2486, 1987.
[4] J. D. Joannopoulos, S. G. Johnson, J. N. Winn et al., Photonic Crystals - Molding the Flow of Light, Second Edition, Princeton University Press,41 William Street, Princeton, New Jersey 08540, 2008.
[5] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett., vol. 67, no. 17, pp. 2295, 1991.
[6] O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B, vol. 16, no. 2, pp. 275, 1999.
[7] H. Takano, Y. Akahane, T. Asano et al., “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett., vol. 84, no. 13, pp. 2226, 2004.
[8] A. Sharkawy, D. Pustai, S. Shi et al., “High transmission through waveguide bends by use of polycrystalline photonic-crystal structures,” Opt. Lett., vol. 28, no. 14, pp. 1197, 2003.
[9] M. Loncar, T. Doll, J. Vuckovic et al., “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides,” J. Lightwave Technol., vol. 18, no. 10, pp. 1402, 2000.
[10] J. C. Knight, J. Arriaga, T. A. Birks et al., “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 807, 2000.
[11] J. C. Knight, J. Broeng, T. A. Birks et al., “Photonic Band Gap Guidance in Optical Fibers,” Science, vol. 282, no. 5393, pp. 1476, 1998.
[12] http://wisin.com/Gem1/Opalus.htm.
[13] L. P. Biro´, Z. Ba´lint, K. Kerte´sz et al., “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E, vol. 67, no. 2, pp. 021907, 2003.
[14] E. Pennisi, “Naturalists' Surveys Show That British Butterflies Are Going, Going,” Science, vol. 303, no. 5665, pp. 1747, 2004.
[15] P. R. Berman, “Cavity Quantum Electrodynamics,” Academy, 1994.
[16] O. Painter, R. K. Lee, A. Scherer et al., “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science, vol. 284, no. 5421, pp. 1819, 1999.
[17] O. Painter, A. Husain, A. Scherer et al., “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1126, 2000.
[18] J. K. Hwang, H. Y. Ryu, D. S. Song et al., “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 mm,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1295, 2000.
[19] T. Yoshie, J. Vuckovic, A. Scherer et al., “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett., vol. 79, no. 26, pp. 4289, 2001.
[20] H. Y. Ryu, S. H. Kwon, Y. J. Lee et al., “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett., vol. 80, no. 19, pp. 3476, 2002.
[21] M. Loncar, T. Yoshie, A. Scherer et al., “Low-threshold photonic crystal laser,” Appl. Phys. Lett., vol. 81, no. 15, pp. 2680, 2002.
[22] K. Srinivasan, P. E. Barclay, O. Painter et al., “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett., vol. 83, no. 10, pp. 1915, 2003.
[23] X. Wu, A. Yamilov, X. Liu et al., “Ultraviolet photonic crystal laser,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3657, 2004.
[24] Y. S. Choi, K. Hennessy, R. Sharma et al., “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett., vol. 87, no. 24, pp. 243101-1, 2005.
[25] L. M. Chang, C. H. Hou, Y. C. Ting et al., “Laser emission from GaN photonic crystals,” Appl. Phys. Lett., vol. 89, no. 7, pp. 071116-1, 2006.
[26] S. Frederick, D. Dalacu, J. Lapointe et al., “Experimental demonstration of high quality factor, x-dipole modes in InAs/InP quantum dot photonic crystal microcavity membranes,” Appl. Phys. Lett., vol. 89, no. 9, pp. 091115-1, 2006.
[27] Y. Ruan, M. K. Kim, Y. H. Lee et al., “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett., vol. 90, no. 7, pp. 071102-1, 2007.
[28] T. Tanabe, A. Shinya, E. Kuramochi et al., “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,” Appl. Phys. Lett., vol. 91, no. 2, pp. 021110-1, 2007.
[29] M. Imada, S. Noda, A. Chutinan et al., “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett., vol. 75, no. 3, pp. 316, 1999.
[30] W. D. Zhou, J. Sabarinathan, P. Bhattacharya et al., “Characteristics of a photonic bandgap single defect microcavity electroluminescent device,” IEEE J. Quantum Electron., vol. 37, no. 9, pp. 1153, 2001.
[31] H. G. Park, S. H. Kim, S. H. Kwon et al., “Electrically Driven Single-Cell Photonic Crystal Laser,” Science, vol. 305, no. 5689, pp. 1444, 2004.
[32] S. C. Huang, T. H. Yang, C. P. Lee et al., “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett., vol. 90, no. 15, pp. 151121-1, 2007.
[33] M. K. Seo, K. Y. Jeong, J. K. Yang et al., “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett., vol. 90, no. 17, pp. 171122-1, 2007.
[34] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett., vol. 57, no. 10, pp. 1046, 1990.
[35] T. S. Iwayama, K. Fujita, S. Nakao et al., “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys., vol. 75, no. 12, pp. 7779, 1994.
[36] E. Werwa, A. A. Seraphin, L. A. Chiu et al., “Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method,” Appl. Phys. Lett., vol. 64, no. 14, pp. 1821, 1994.
[37] H. Morisaki, F. W. Ping, H. Ono et al., “Above-band-gap photoluminescence from Si fine particles with oxide shell,” J. Appl. Phys., vol. 70, no. 3, pp. 1869, 1991.
[38] F. Iacona, G. Franzo, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys., vol. 87, no. 3, pp. 1295, 2000.
[39] 賴柏翰, 多色彩奈米矽基金氧半發光二極體, 國立台灣大學電機資訊學院光電工程學研究所碩士論文, 2008.
[40] C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B, vol. 48, pp. 11024, 1993.
[41] C. J. Lin, C. K. Lin, C. W. Chang et al., “Photoluminescence of Plasma Enhanced Chemical Vapor Deposition Amorphous Silicon Oxide with Silicon Nanocrystals Grown at Different Fluence Ratios and Substrate Temperatures,” J. J. Appl. Phys., vol. 45, no. 2, pp. 1040, 2006.
[42] K. Sakoda, Optical Properties of Photonic Crystal, Springer-Verlag, 2001.
[43] D. J. Griffiths, INTRODUCTION to ELECTRODYNAMICS, Third Edition , Prentice Hall, 1998.
[44] K. S. Yee, “Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag., vol. 14, no. 3, pp. 302, 1966.
[45] K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis, WILEY, 2001.
[46] O. Svelto and D. C. Hanna, Principles of Lasers, Third Edition., Springer.
[47] 張利銘, 半導體光子晶體雷射之研究, 國立中央大學光電科學研究所碩士論文, 2007.
[48] http://en.wikipedia.org/wiki/Brillouin_zone.
[49] H. G. Park, J. K. Hwang, J. Huh et al., “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett., vol. 79, no. 19, pp. 3032, 2001.
[50] Y. Akahane, T. Asano, B. S. Song et al., “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature, vol. 425, no. 6961, pp. 944, 2003.
[51] http://en.wikipedia.org/wiki/Distributed_Bragg_reflector.
[52] 謝嘉民, 賴一凡, 林永昌 et al., 光激發螢光量測的原理、架構及應用, 奈米通訊第十二卷第二期, pp. 28, 2005.
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2009-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明