博碩士論文 962206068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:162 、訪客IP:3.135.206.212
姓名 蔡承樺(Cheng-Hua Tsai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以表面電漿子及散逸式模態雙重效應為基礎之全方位反射面及其在固態照明的應用
(Omnidirectional Reflector Based on Dual Effect ofSurface Plasmonics Resonance and Leaky ModeResonance and Its Application on Solid State Lighting)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組★ 利用光展量概念之微型投影機光學設計方法與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主要提出以表面電漿子(Surface Plasmonics
Resonance (SPR))及散逸式模態(Leaky Mode Resonance (LMR))雙重效應為基礎的全方位反射鏡(Omnidirectional Reflector)結構,全方位反射鏡使用有限時域差分法(Finite Difference Time Domain)與嚴格耦合波分析法(Rigorous Coupled-Wave Analysis)為模擬計算及設計之基礎。全方位反射鏡主要是以矽為基板並在上層堆疊兩層結構,分別是鋁金屬光柵以及BCB(Benzocyclobutene 苯環丁烯)高分子聚合物薄膜。元件主要的工作機制可分為兩種模態,其一是在金屬光柵上層激發出表面電漿子模態 (SPR)向兩側傳播,另一種模態是期望藉由BCB薄層對於能量無法拘限於薄膜內而將能量以散逸式模態(LMR)穿透至元件外,達到高反射率的效果。
全方位反射鏡經FDTD演算法計算後,光源在波長為450nm由正向
及斜向入射全方位反射鏡後可得到反射率為分別為96.24%及92.00
%。而全方位反射在波長為450nm條件下經由RCWA演算法模擬由0∘至89∘入射所計算出的平均反射率為97.08%。而最低的反射率出現在入射角度為30∘為73%。而在全方位反射波長為400nm至1600nm條件下經由RCWA演算法模擬由正向入射所計算出的平均反射率為95.84%。
並利用RCWA演算法模擬光源波長從400nm至1600nm及入射角度為0∘至89∘的頻譜圖,經模擬計算後可得到平均反射率為95.56%。
除此之外,全方位反射鏡也利用RCWA演算法,模擬在反射鏡上層
具有垂直式氮化鎵薄膜發光二極體的情況,經模擬波長在450nm而入
射角度從0∘至89∘下計算後的平均反射率99.14%。在本論文中也會提及對於製程容忍度的模擬及計算結果。本論文提出一組具有高反射率、較寬的波長頻寬(400nm至1600nm)、全方位(omnidirectional)的特性及低電阻值適用於發光二極體的全方位反射鏡。
摘要(英) In this paper, a two-layer ODR based on the Dual Effect of Surface Plasmonic Resonance (SPR) and Leaky Mode Resonance (LMR) is proposed for the first time to simplify the structure of DESL - ODR. The proposed DESL - ODR is expected to operate in a spectral range covered the visible and infrared wavelengths with a wide angular endurance of incidence. The DESL - ODR is constructed with the aluminum gratings on silicon substrate coated with benzocyclobutene (BCB) as a cover layer. By using the finite difference time domain (FDTD) method and the rigorous coupled-wave analysis (RCWA), the resonance behavior of proposed DESL - ODR is observed. The reflectance of the DESL - ODR structures can be 96.24% and 99.41% at 450 nm for incident angles of 0 and 80°.
For a broadband spectrum of 400 – 1600 nm, the average reflectance can reach 95.56% at 400 – 1600 nm under oblique incidence of 0-89°. It markedly means that most of incident wave over the visible and near infrared range can be reflected even the wide incident angle up to 89°.
Moreover, the minimum reflectance for the wavelength of 450 nm can be maintained 73% at the incident angle of 30°. The thin-GaN LED (light-emitting diode) with DESL - ODR structure is compared as an example to the DESL - ODR structure in free space. For normal incidence, the minimum reflectance of 400 - 1600 nm occurs at the short wavelength of 400 nm with a value of 91%.
關鍵字(中) ★ 固態照明
★ 散逸式模態
★ 表面電漿子
關鍵字(英) ★ Solid State Lighting
★ Leaky Mode Resonance
★ Surface Plasmonics Resonance
論文目次 第一章 序論 1
1-1 固態照明的發展與技術 1
1-2 全方位反射鏡的發展 5
1-3 改善全方位反射鏡的方法 8
1-4 全方位反射鏡與發光二極體的整合 10
1-5 具有微奈米結構之發光二極體的表現度 12
第二章 全方位反射鏡的設計 14
2-1 全方位反射鏡的結構與參數 14
2-2 有限時域差分法理論模擬數據與分析 15
2-3 嚴格耦合波理論模擬數據與分析 19
2-4 全方位反射面實作構想及可行性評估 23
第三章 全方位反射鏡與發光二極體的整合 29
3-1 全方位反射鏡與發光二極體整合的表現度 29
3-2 模擬數據與光子行為 34
3-3 製程實施構想 36
第四章 具有微奈米結構之發光二極體的表現度 39
4-1 有限時域差分法應用於微奈米光學結構 39
4-2 結論 43
第五章 結論與未來展望 44
參考文獻 46
參考文獻 [1] E. F. Schubert and J. K. Kim, “Solid - state light sources getting smart”, Science, vol. 308, pp. 1274–1278, (2005).
[2] E. F. Schubert, Light - Emitting Diodes. Cambridge, U.K: Cambridge Univ. Press, (2003).
[3] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector”, Science 282, 1679–1682 (1998).
[4] Kevin M. Chen, Andrew W. Sparks, Hsin-Chiao Luan, Desmond R. Lim, Kazumi Wada, and Lionel C. Kimerling, “SiO2 /TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method”, Appl. Phys. Lett., 75, 24 (1999).
[5] Michael F. Weber, Carl A. Stover, Larry R. Gilbert,Timothy J. Nevitt, Andrew J. Ouderkirk, “Giant Birefringent Optics in Multilayer Polymer Mirrors", Science , 287, 31, pp. 2451–2456 (2000)
[6] A. Bruyant, G. Le´rondel, P. J. Reece and M. Gal, “All-silicon omnidirectional mirrors based on one-dimensional photonic crystals", Appl. Phys. Lett., 82, 19 (2003).
[7] Jong Kyu Kim, Thomas Gessmann, Hong Luo, and E. Fred Schubert, “A GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector”, Appl. Phys. Lett. 84, 22 (2004).
[8] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett. 84, 855 (2004).
[9] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes”, IEEE Photon. Tech. Lett., 18, 1512 (2006).
[10] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers”, IEEE Electron. Dev. Lett. 52, 2346 (2005).
[11] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke and J. K. Sheu, “Nitride-based LEDs with an SPS tunneling contact Layer and an ITO transparent contact”, IEEE Photon. Tech. Lett. 16, 1002 (2004).
[12] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode”, Jpn. J Appl. Phys. 41, L1431 (2002).
[13] D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim and S. J. Park, “Improvement of Light Extraction Efficiency of Flip-Chip Light-Emitting Diode by Texturing the Bottom Side Surface of Sapphire Substrate”, IEEE Photon. Tech. Lett. 18, 1406 (2006).
[14] C. F. Lin, J. J. Dai, Z. J. Yang, J. H. Zheng and S. Y. Chang, “Self-assembled GaN:Mg inverted hexagonal pyramids formed through a photoelectrochemical wet-etching process”, J. Electrochem. Soc. 8, C185 (2005).
[15] C. S. Chang, S. J. Chang, Y K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke and H. M. Lo, “Nitride-based LEDs with textured side walls”, IEEE Electron. Dev. Lett. 16, 750 (2004).
[16] C. W. Kuo, Y. C. Lee , Y. K. Fu, C. H. Tsai, M. L. Wu,G. C. Chi, and C. H. Kuo, “Optical simulation and fabrication of nitride-based light-emitting diodes with the inverted pyramid sidewalls”, IEEE, Journal of Selected Topics in Quantum Electronics (2009) (Accepted).
指導教授 伍茂仁、張正陽
(Mount-Learn Wu、Jenq-Yang Chang)
審核日期 2009-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明