博碩士論文 103322601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.145.91.152
姓名 周超(Zhou Chao)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 蛋形顆粒群之流固耦合分析
(Interaction Analysis of Egg-Shaped Particles with Fluid)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 複合版梁元素分析模型之橋梁動態識別法
★ 三維等效單軸應變與應力之材料組成模型★ 人行吊橋的現有內力評估及動力分析
★ 薄殼結構非線性運動之向量式有限元分析法★ 雷射掃描技術於鋼軌磨耗之檢測
★ 動態加載下的等效單軸應變與 應力材料組成模型★ PISO三維流體動力學之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文採一種雙向流動態耦合數值分析法來模擬蛋形顆粒在流體中的運動。該模擬在一個固定歐拉網格下實現。採用流體體積法(Volume of Fluid method)來描述多相液体介面和固液介面。通過大渦模擬(Large Eddy Simulation)求解流場壓力,再將顆粒表面受力積分求得流體對固體作用力。流體固體相互作用通過由固體邊界速度指定網格面速度來實現。顆粒的運動軌跡和顆粒間的碰撞則通過離散元素法(Discrete Element Method)跟踪,顆粒間的相互作用力基于彈性力學接觸理論。本論文首先使用該耦合模型模擬了單顆粒的運動,並與實驗結果進行比對。然後用此數值方法模擬了不同形狀卵形顆粒和多顆粒的沉降與碰撞行為。
摘要(英) In this thesis, we adopted a two-way dynamic coupled numerical method to simulate the motion of egg-shaped particles in fluid. The simulation is actualized in a fixed Eulerian grid. The Volume of Fluid (VOF) method is used to track the fluid-fluid and solid-fluid interfaces. Apply the Large Eddy simulation (LES) to solve the flow field stress, and then integral the traction on the particle surface to obtain the hydrodynamic force on the structure. The fluid-solid interaction is realized by specifying the cell-face velocity which is designated by the velocity of the structure boundary. The particle trajectories and collisions between the particles are calculated by the discrete element method (DEM), and the interaction forces between the particles are based on the elastic contact theory. The accuracy of this analysis method is verified by simulating the motion of a single egg-shaped particle and compared with the experimental results. Examples of settlement of a single particle and collision of particles are simulated by the numerical method.
關鍵字(中) ★ 流體體積法
★ 離散元素法
★ 流固耦合
★ 大渦模擬
★ 蛋形顆粒
關鍵字(英) ★ Volume of Fluid method
★ Discrete Element Method
★ Fluid-Solid interaction
★ Large Eddy simulation
★ Egg-shaped particle
論文目次 Contents
摘要 I
ABSTRACT II
Acknowledgement III
Contents IV
Figure Captions VII
Table Captions XII
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Research motivation and purpose 3
1.3 Research method 3
1.4 Thesis contents 4
Chapter 2 Literature Review 5
2.1 Discrete element method 5
2.1.1 Generation of discrete element method 5
2.1.2 Elliptical particle system 6
2.1.3 Development process of particle contact judgment 7
2.2 Fluid-solid interaction 8
2.2.1 Classification of fluid-solid interaction 9
2.2.2 Solving method of fluid-solid interaction 9
2.2.3 Fluid and ellipsoidal particles interaction 12
Chapter 3 Computational Analysis of Fluid-Solid Interaction 13
3.1 Flow chart of fluid-solid interaction analysis 14
3.2 The VOF method for calculating the fluid-solid interface 15
3.3 Turbulence model 19
3.4 Resultant forces on solid surface 21
Chapter 4 Motion Analysis of Egg-Shaped Particles 23
4.1 Shape description of a egg-shaped particles 23
4.1.1 Generation of a 2D egg-shaped particle 24
4.1.2 Generation of a 3D egg-shaped particle 26
4.1.3 Calculation of the physical parameters of a 3D egg-shaped particle 28
4.1.4 Discretization of surface for egg-shaped particle 31
4.2 Contact judgement of the egg-shaped particle 34
4.2.1 Contact analysis of the egg-shaped particle and the plane 38
4.2.2 Contact analysis between the egg-shaped particles 39
4.3 Analysis and calculation of contact force between the egg-shaped particles 46
4.3.1 Normal contact spring of the egg-shaped particle 48
4.3.2 Tangential contact spring of the egg-shaped particle 53
4.4 Motion analysis of the egg-shaped particles 54
4.4.1 Translation and rotation of the egg-shaped particle 54
4.4.2 Time integration method for the solid part 56
4.4.3 Rotation of the principle axis direction vector of the egg-shaped particle 57
Chapter 5 Numerical and Experimental Validation 60
5.1 Validation of volume and moment of inertia formulas 60
5.2 Validation of calculation for surface forces 61
5.3 Validation of drag coefficient of a sphere 64
5.4 Sedimentation experiment of a single egg-shaped particle 69
Chapter 6 Numerical Results and Analysis 79
6.1 Sedimentation simulation of six egg-shaped particle 79
6.2 An egg-shaped particle slide along the slope 83
6.3 Simulation of large egg-shaped particle impacting on multiple small particles 86
6.4 Simulation of the different incident angles 89
6.5 Multiphase flow simulation 95
6.6 Collision of two egg-shaped particles in fluid 97
Chapter 7 Conclusions 105
References 106
Appendix A: Formula of a Space Vector Rotation 111
A-1 Derivation of rotation formula 111
Appendix B: Derivation of the Navier-Stokes Equations 115
B.1 Initial form of the N-S Equations 115
B.1.1 Force acting on the element 115
B.1.2 Velocity and acceleration acting on the fluid 116
B.2 Simplification of stress form 117
B.3 N-S Equations for incompressible fluid 118
B.4 Rewrite the acceleration item d"u"/dt 120
參考文獻 [1] Hu, H. H., Joseph, D. D., & Crochet, M. J. Direct simulation of fluid particle motions. Theoretical and Computational Fluid Dynamics, 3(5), 285-306,1992.
[2] Hu, H. H. Direct simulation of flows of solid-liquid mixtures. International Journal of Multiphase Flow, 22(2), 335-352, 1996.
[3] Hu, H. H., Patankar, N. A., & Zhu, M. Y. Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. Journal of Computational Physics, 169(2), 427-462, 2001.
[4] Kuhl, E., Hulshoff, S., & De Borst, R. An arbitrary Lagrangian Eulerian finite‐element approach for fluid–structure interaction phenomena. International journal for numerical methods in engineering, 57(1), 117-142, 2003.
[5] Chen, S., & Doolen, G. D. Lattice Boltzmann method for fluid flows. Annual review of fluid mechanics, 30(1), 329-364, 1998.
[6] Qi, D., Luo, L., Aravamuthan, R., & Strieder, W. Lateral migration and orientation of elliptical particles in Poiseuille flows. Journal of statistical physics, 107(1-2), 101-120, 2002.
[7] Huang, H., Yang, X., Krafczyk, M., & Lu, X. Y. Rotation of spheroidal particles in couette flows. Journal of Fluid Mechanics, 692(692), 369-394, 2012.
[8] Peskin, C. S. Flow patterns around heart valves: a numerical method. Journal of computational physics, 10(2), 252-271, 1972.
[9] Peskin, C. S. The immersed boundary method. Acta numerica, 11, 479-517,2002.
[10] Kim, D., & Choi, H. Immersed boundary method for flow around an arbitrarily moving body. Journal of Computational Physics, 212(2), 662-680, 2006.
[11] Gilmanov, A., & Sotiropoulos, F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. Journal of Computational Physics, 207(2), 457-492, 2005.
[12] Liu, P. F., Wu, T. R., Raichlen, F., Synolakis, C. E., & Borrero, J. C. Runup and rundown generated by three-dimensional sliding masses. Journal of fluid Mechanics, 536, 107-144, 2005.
[13] Wu, T. R., Chu, C. R., Huang, C. J., Wang, C. Y., Chien, S. Y., & Chen, M. Z. A two-way coupled simulation of moving solids in free-surface flows. Computers & Fluids, 100, 347-355, 2014.
[14] Cundall, P. A. The measurement and analysis of accelerations in rock slopes (Doctoral dissertation, University of London), 1971.
[15] Cundall, P. A., & Strack, O. D. A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47-65, 1979.
[16] Cundall, P. A., & Strack, O. D. L. Modeling of microscopic mechanisms in granular material. Studies in Applied Mechanics, 7, 137-149, 1983.
[17] Rothenburg, L., & Bathurst, R. J. Analytical study of induced anisotropy in idealized granular materials. Géotechnique, 39(39), 601-614, 1989.
[18] Rothenburg, L., & Bathurst, R. J. Numerical simulation of idealized granular assemblies with plane elliptical particles. Computers & Geotechnics, 11(4), 315-329, 1991.
[19] Lin, X., & Ng, T. T. Contact detection algorithms for three‐dimensional ellipsoids in discrete element modelling. International Journal for Numerical and Analytical Methods in Geomechanics, 19(9), 653-659, 1995.
[20] Shen, L., & Chan, E. S. Numerical simulation of fluid–structure interaction using a combined volume of fluid and immersed boundary method. Ocean Engineering, 35(8), 939-952, 2008.
[21] Hirt, C. W., & Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225, 1981.
[22] Youngs, D. L.,Time-dependent multi-material flow with large fluid distortion. Numerical methods for fluid dynamics, 24(2), 273-285, 1982.
[23] Wu, T. R. A numerical study of three-dimensional breaking waves and turbulence effects, 2004.
[24] O′Brien, J. F., & Hodgins, J. K. Dynamic simulation of splashing fluids. In Computer Animation′95., Proceedings. (pp. 198-205). IEEE, 1995.
[25] Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. A dynamic subgrid‐scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics (1989-1993), 3(7), 1760-1765, 1991.
[26] Smagorinsky, J. General circulation experiments with the primitive equations: I. the basic experiment*. Monthly weather review, 91(3), 99-164, 1963.
[27] Wang, C.-Y., and V.-C. Liang, A Packing Generation Scheme for the Granular Assemblies With Planar Elliptical Particles, International 107 Journal for Numerical and Analytical Methods in Geomechanics, Vol. 29, pp. 347-358 , 1997.
[28] Cundall, P. A. Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 25, No. 3, pp. 107-116). Pergamon, 1988.
[29] Hart, R., Cundall, P. A., & Lemos, J. Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 25, No. 3, pp. 117-125). Pergamon, 1988.
[30] Lin, M. Efficient Collision Detection for Animation and Robotics,′′Ph. D. thesis, University of California, Berkeley, 1993.
[31] Wang, C. Y., Liao, Y. P., Chen, C. S., Yang, F. L., & Hsieh, S. H. Motion analysis of mixed polyhedral and ellipsoidal particles. In Proceedings of the 6th International Conference on Computation of Shell & Spatial Structures. Cornell University, 2008.
[32] Mindlin, R. D., Compliance of Elastic Bodies in Contact. J. of Appl. Mech., 16, pp. 259-268, 1949.
[33] Wu, T. R., Huang, C. J., Chuang, M. H., Wang, C. Y., & Chu, C. R. Dynamic coupling of multi-phase fluids with a moving obstacle. Journal of Marine Science and Technology, 19(6), 643-650, 2011.
[34] Chang-Long Lee, Numerical Simulation of the Motion of Granular Assemblies with Elliptical Particles, Master Thesis, Department of Civil Engineering, National Central University, Zhongli, 1997.
[35] Jian-Hon Liu, Numerical simulations for granular assemblies with 3D ellipsoidal particles, Master Thesis, Department of Civil Engineering, National Central University, Zhongli, 1998.
[36] Chun-Chuan Chen, Numerical Simulations for Granular Assemblies with Mixed 3D Ellipsoidal Particles, Master Thesis, Department of Civil Engineering, National Central University, Zhongli, 1999.
[37] Sheng-Hung Lin, Numerical Simulations for Granular Assemblies with 3D Egg-shaped Particles, Master Thesis, Department of Civil Engineering, National Central University, Zhongli, 2006.
[38] Chen Xiaomin, Development and Verification of the Normal and Tangential Equivalent Linear Contact Springs of Egg Shape Particles, Master Thesis, Department of Civil Engineering, National Central University, Zhongli, 2014.
[39] Zhang, H., Ahmadi, G., Fan, F. G., & McLaughlin, J. B. Ellipsoidal particles transport and deposition in turbulent channel flows. International Journal of Multiphase Flow, 27(6), 971-1009, 2001.
[40] Swaminathan, T. N., Mukundakrishnan, K., & Hu, H. H. Sedimentation of an ellipsoid inside an infinitely long tube at low and intermediate Reynolds numbers. Journal of fluid mechanics, 551, 357-386, 2006.
[41] Xia, Z., Connington, K. W., Rapaka, S., Yue, P., Feng, J. J., & Chen, S. Flow patterns in the sedimentation of an elliptical particle. Journal of Fluid Mechanics, 625, 249-272, 2009.
[42] Huang, H., Yang, X., & Lu, X. Y. Sedimentation of an ellipsoidal particle in narrow tubes. Physics of Fluids (1994-present), 26(5), 053302, 2014.
指導教授 王仲宇(Chung-Yue Wang) 審核日期 2016-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明