參考文獻 |
[1] Hu, H. H., Joseph, D. D., & Crochet, M. J. Direct simulation of fluid particle motions. Theoretical and Computational Fluid Dynamics, 3(5), 285-306,1992.
[2] Hu, H. H. Direct simulation of flows of solid-liquid mixtures. International Journal of Multiphase Flow, 22(2), 335-352, 1996.
[3] Hu, H. H., Patankar, N. A., & Zhu, M. Y. Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. Journal of Computational Physics, 169(2), 427-462, 2001.
[4] Kuhl, E., Hulshoff, S., & De Borst, R. An arbitrary Lagrangian Eulerian finite‐element approach for fluid–structure interaction phenomena. International journal for numerical methods in engineering, 57(1), 117-142, 2003.
[5] Chen, S., & Doolen, G. D. Lattice Boltzmann method for fluid flows. Annual review of fluid mechanics, 30(1), 329-364, 1998.
[6] Qi, D., Luo, L., Aravamuthan, R., & Strieder, W. Lateral migration and orientation of elliptical particles in Poiseuille flows. Journal of statistical physics, 107(1-2), 101-120, 2002.
[7] Huang, H., Yang, X., Krafczyk, M., & Lu, X. Y. Rotation of spheroidal particles in couette flows. Journal of Fluid Mechanics, 692(692), 369-394, 2012.
[8] Peskin, C. S. Flow patterns around heart valves: a numerical method. Journal of computational physics, 10(2), 252-271, 1972.
[9] Peskin, C. S. The immersed boundary method. Acta numerica, 11, 479-517,2002.
[10] Kim, D., & Choi, H. Immersed boundary method for flow around an arbitrarily moving body. Journal of Computational Physics, 212(2), 662-680, 2006.
[11] Gilmanov, A., & Sotiropoulos, F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. Journal of Computational Physics, 207(2), 457-492, 2005.
[12] Liu, P. F., Wu, T. R., Raichlen, F., Synolakis, C. E., & Borrero, J. C. Runup and rundown generated by three-dimensional sliding masses. Journal of fluid Mechanics, 536, 107-144, 2005.
[13] Wu, T. R., Chu, C. R., Huang, C. J., Wang, C. Y., Chien, S. Y., & Chen, M. Z. A two-way coupled simulation of moving solids in free-surface flows. Computers & Fluids, 100, 347-355, 2014.
[14] Cundall, P. A. The measurement and analysis of accelerations in rock slopes (Doctoral dissertation, University of London), 1971.
[15] Cundall, P. A., & Strack, O. D. A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47-65, 1979.
[16] Cundall, P. A., & Strack, O. D. L. Modeling of microscopic mechanisms in granular material. Studies in Applied Mechanics, 7, 137-149, 1983.
[17] Rothenburg, L., & Bathurst, R. J. Analytical study of induced anisotropy in idealized granular materials. Géotechnique, 39(39), 601-614, 1989.
[18] Rothenburg, L., & Bathurst, R. J. Numerical simulation of idealized granular assemblies with plane elliptical particles. Computers & Geotechnics, 11(4), 315-329, 1991.
[19] Lin, X., & Ng, T. T. Contact detection algorithms for three‐dimensional ellipsoids in discrete element modelling. International Journal for Numerical and Analytical Methods in Geomechanics, 19(9), 653-659, 1995.
[20] Shen, L., & Chan, E. S. Numerical simulation of fluid–structure interaction using a combined volume of fluid and immersed boundary method. Ocean Engineering, 35(8), 939-952, 2008.
[21] Hirt, C. W., & Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225, 1981.
[22] Youngs, D. L.,Time-dependent multi-material flow with large fluid distortion. Numerical methods for fluid dynamics, 24(2), 273-285, 1982.
[23] Wu, T. R. A numerical study of three-dimensional breaking waves and turbulence effects, 2004.
[24] O′Brien, J. F., & Hodgins, J. K. Dynamic simulation of splashing fluids. In Computer Animation′95., Proceedings. (pp. 198-205). IEEE, 1995.
[25] Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. A dynamic subgrid‐scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics (1989-1993), 3(7), 1760-1765, 1991.
[26] Smagorinsky, J. General circulation experiments with the primitive equations: I. the basic experiment*. Monthly weather review, 91(3), 99-164, 1963.
[27] Wang, C.-Y., and V.-C. Liang, A Packing Generation Scheme for the Granular Assemblies With Planar Elliptical Particles, International 107 Journal for Numerical and Analytical Methods in Geomechanics, Vol. 29, pp. 347-358 , 1997.
[28] Cundall, P. A. Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 25, No. 3, pp. 107-116). Pergamon, 1988.
[29] Hart, R., Cundall, P. A., & Lemos, J. Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 25, No. 3, pp. 117-125). Pergamon, 1988.
[30] Lin, M. Efficient Collision Detection for Animation and Robotics,′′Ph. D. thesis, University of California, Berkeley, 1993.
[31] Wang, C. Y., Liao, Y. P., Chen, C. S., Yang, F. L., & Hsieh, S. H. Motion analysis of mixed polyhedral and ellipsoidal particles. In Proceedings of the 6th International Conference on Computation of Shell & Spatial Structures. Cornell University, 2008.
[32] Mindlin, R. D., Compliance of Elastic Bodies in Contact. J. of Appl. Mech., 16, pp. 259-268, 1949.
[33] Wu, T. R., Huang, C. J., Chuang, M. H., Wang, C. Y., & Chu, C. R. Dynamic coupling of multi-phase fluids with a moving obstacle. Journal of Marine Science and Technology, 19(6), 643-650, 2011.
[34] Chang-Long Lee, Numerical Simulation of the Motion of Granular Assemblies with Elliptical Particles, Master Thesis, Department of Civil Engineering, National Central University, Zhongli, 1997.
[35] Jian-Hon Liu, Numerical simulations for granular assemblies with 3D ellipsoidal particles, Master Thesis, Department of Civil Engineering, National Central University, Zhongli, 1998.
[36] Chun-Chuan Chen, Numerical Simulations for Granular Assemblies with Mixed 3D Ellipsoidal Particles, Master Thesis, Department of Civil Engineering, National Central University, Zhongli, 1999.
[37] Sheng-Hung Lin, Numerical Simulations for Granular Assemblies with 3D Egg-shaped Particles, Master Thesis, Department of Civil Engineering, National Central University, Zhongli, 2006.
[38] Chen Xiaomin, Development and Verification of the Normal and Tangential Equivalent Linear Contact Springs of Egg Shape Particles, Master Thesis, Department of Civil Engineering, National Central University, Zhongli, 2014.
[39] Zhang, H., Ahmadi, G., Fan, F. G., & McLaughlin, J. B. Ellipsoidal particles transport and deposition in turbulent channel flows. International Journal of Multiphase Flow, 27(6), 971-1009, 2001.
[40] Swaminathan, T. N., Mukundakrishnan, K., & Hu, H. H. Sedimentation of an ellipsoid inside an infinitely long tube at low and intermediate Reynolds numbers. Journal of fluid mechanics, 551, 357-386, 2006.
[41] Xia, Z., Connington, K. W., Rapaka, S., Yue, P., Feng, J. J., & Chen, S. Flow patterns in the sedimentation of an elliptical particle. Journal of Fluid Mechanics, 625, 249-272, 2009.
[42] Huang, H., Yang, X., & Lu, X. Y. Sedimentation of an ellipsoidal particle in narrow tubes. Physics of Fluids (1994-present), 26(5), 053302, 2014. |