摘要(英) |
Taiwan has the subtropical climate. Although annual rainfall of the island reaches 2,500 mm, available water resources of dry seasons are limited due to great spatial and temporal variabilities. Reliable water resources management systems are crucial to provide stable water supplies in Taiwan. Considering potential impacts of climate change may cause increased intensities and frequencies of extreme events, effect management strategies are particularly important. This study investigated impacts of climate changes on water resources in Tainan City. Historical meteorological data were collected. A weather generator was applied to generate daily temperature and rainfall for near future (2021~2040). The year 2030 was used to represent the near future. Weather data of every 5 years from 2015 to 2030 were estimated by linear interpolations. A hydrological model, GWLF, was adopted to simulate inflows of reservoirs in Tainan City. A system dynamic model, VENSIM, was used to build water resources system of the city to evaluate vulnerability and reliability of water resources in Tainan City under climate changes. Under near future scenarios, the carrying capacities of water resources systems are insufficient to support the great increase of public water demands. A variety of adaption measures, such as expanding capacities of water treatment plants and building desalination plants, were evaluated for resolving such shortages. Thresholds of vulnerability, shortage index, reliability, and relative cost of selected adaption measures were used to determine optimized combination of adaption measures by the multi-criteria ranking as suggested adaption pathways for every 5 years till 2030. Under the RCP4.5 scenario with increased pubic water demands, extra capacities of one million tons per 10-day and two millions tons per 10-day are required from water treatment plants to overcome water shortage in 2020 and 2025, respectively; while extra capacities of one million tons per 10-day from water treatment plants and two millions tons per 10-day from desalination plants are required in 2030. Under the RCP8.5 scenario with increased pubic water demands, extra capacities of one million tons per 10-day are required from water treatment plants to overcome water shortage in 2020; while extra capacities of one million tons per 10-day from water treatment plants and one millions tons per 10-day from desalination plants are required to overcome water shortage in 2025 and extra capacities of two million tons per 10-day from water treatment plants and two millions tons per 10-day from desalination plants are required to overcome water shortage in 2030. Comparing water shortages between RCP4.5 and RCP8.5 scenarios, one million tons per 10-day are required due to sever climate change impact. |
參考文獻 |
1. Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E., & Ambenje, P. "Observed variability and trends in extreme climate events: A brief review*." Bulletin of the American Meteorological Society 81.3 (2000): 417-425.
2. Haasnoot, M., van Deursen, W. P., Middelkoop, H., Beek, E. V., & Wijermans, F. E. H. "An integrated assessment metamodel for developing adaptation pathways for sustainable water management in the Lower Rhine Delta." (2012): oral.
3. Haasnoot, M., Kwakkel, J. H., Walker, W. E., & ter Maat, J. "Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world." Global environmental change 23.2 (2013): 485-498.
4. Haasnoot, M., Middelkoop, H., Offermans, A., Van Beek, E., & van Deursen, W. P. "Exploring pathways for sustainable water management in river deltas in a changing environment." Climatic Change 115.3-4 (2012): 795-819.
5. Haith, Douglas A., Ross Mandel, and R. Shyan Wu. "GWLF, generalized watershed loading functions, version 2.0, user’s manual." Dept. of Agricultural & Biological Engineering, Cornell University, Ithaca, NY (1992).
6. Hashimoto, Tsuyoshi, Jery R. Stedinger, and Daniel P. Loucks. "Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation." Water resources research 18.1 (1982): 14-20.
7. Kwakkel, Jan H., Marjolijn Haasnoot, and Warren E. Walker. "Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world." Climatic Change 132.3 (2015): 373-386.
8. Lehner, B., Döll, P., Alcamo, J., Henrichs, T., & Kaspar, F. "Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis." Climatic Change75.3 (2006): 273-299.
9. Liu, T. M., Tung, C. P., Ke, K. Y., Chuang, L. H., & Lin, C. Y. "Application and development of a decision-support system for assessing water shortage and allocation with climate change." Paddy and Water Environment 7.4 (2009): 301-311.
10. Mishra, Vimal, Keith A. Cherkauer, and Shraddhanand Shukla. "Assessment of drought due to historic climate variability and projected future climate change in the midwestern United States." Journal of Hydrometeorology 11.1 (2010): 46-68.
11. Tang, W. H., and B. C. Yen. "Hydrologic and hydraulic design under uncertainties." Proceedings of the International Symposium on Uncertainties in Hydrologic and Water Resource Systems. 1973.
12. Tung, Ching-Pin, and Douglas A. Haith. "Global-warming effects on New York streamflows." Journal of Water Resources Planning and Management 121.2 (1995): 216-225.
13. Tung, Ching-Pin, et al. "Carrying Capacity and Sustainability Appraisals on Regional Water Supply Systems under Climate Change." British Journal of Environment and Climate Change 4.1 (2014): 27.
14. Yen, B. C., and AH-S. Ang. "Risks analysis in design of hydraulic projects." (1971).
15. 王宗南,「水庫容量風險性設計準則之比較探討」,國立成功大學水利及海洋工程學系,碩士論文,2006。
16. 王鈺閔,「缺水指標與缺水風險之相關性」,國立中央大學土木工程學系,碩士論文,2009。
17. 台灣氣候變遷推估與資訊平台(TCCIP), 2015。
18. 吳至剛,「氣候變遷對高屏溪流域水資源衝擊之探討」,國立成功大學水利及海洋工程學系,碩士論文,2000。
19. 吳幸娟,「應用土地利用變遷模式與水文模式分析氣候變遷下水文通量之變化」,國立中央大學土木工程學系,碩士論文,2014。
20. 吳明進、陸雲、童慶斌、許少華,「區域氣候變遷模擬系統之整合與應用---子計畫VI:全球氣候變遷對台灣區域氣候與水資源衝擊之評析(I)」,行政院國家科學委員會,2002。
21. 吳瑞賢、李明旭、陳世偉,「農業區地表水系統之模擬與推估」,農業工程學報,第57卷,第1期,2011。
22. 呂季蓉,「台灣南部地區長期乾旱趨勢分析之研究」,國立成功大學水利及海洋工程研究所,碩士論文,2006。
23. 李明旭等人,「氣候變遷調適科技整合研究計畫-跨領域脆弱度評估」,2014。
24. 林怡妏,「改良GWLF 模式應用於集水區不同時距流量推估」,碩士論文,國立中央大學土木工程學系,2012。
25. 林裕彬等人,「台灣地區各水資源分區因應氣候變遷水資源管理調適能力綜合研究」,經濟部水利署。
26. 范純志,「氣候變遷對臺灣地區地下水補注量的影響」,碩士論文,國立台灣大學農業工程研究所 (2005)。
27. 徐享崑,「高屏溪流域水資源規劃缺水指標之研究」,經濟部水資源統一規劃委員會,1988。
28. 氣候變遷整合評估模式(TaiWAP),2015。
29. 張婉茹,「應用系統動力學於多元化水資源策略模擬與分析-以台中地區為例」,國立交通大學土木工程研究所,碩士論文,2006。
30. 莊立昕,「氣候變遷對供水系統承載力影響評估方法之建立」,國立臺灣大學生物環境系統工程學研究所,碩士論文,2010。
31. 連宛渝,「氣象合成與水文模式之發展及因應氣候變遷之供水系統調適能力建構」,國立臺灣大學生物環境系統工程學研究所,博士論文,2013。
32. 陳伯豪,「石門水庫供水系統風險分析」,國立中央大學土木工程研究所,2011。
33. 陳亭玉,「河川流域水土資源承載力與永續力評量模式之發展」,國立中央大學環境工程研究所,,碩士論文,2000。
34. 陳亭羽,「氣候變遷對桃園地區水稻產量及灌溉需水量之影響」,國立中央大學土木工程學系,碩士論文,2012。
35. 陳榮松,「氣候變遷對農業用水衝擊推估模式之建立」,行政院農委會,2010。
36. 游保杉,「高屏溪流域區域日降雨-逕流之研究(III)」,行政院國家科學委員會,2000。
37. 童慶斌,氣候變遷對灌溉系統之衝擊與脆弱度評估方法之建立, 行政院農業委員會,2010。
38. 童慶斌,劉子明,林嘉佑,曹榮軒,李明旭,「氣候變遷水資源風險評估與調適決策之探討」,中國土木水利工程學會會刊,第42卷,第4期,2015。
39. 黃金山,「臺灣水庫規劃缺水忍耐標準之探討」,第三屆水利工程研討會論文集,51-64頁,1986。
40. 溫漢章,「利用合成流量進行水資源系統分析-以濁水溪流域為例」,碩士論文,2001。
41. 經濟部水利署,「台灣地區水資源需求潛勢評估及經理策略檢討」,2009。
42. 經濟部水利署,「台灣南部區域水資源經理基本計畫」,2011。
43. 經濟部水利署,「強化南部水資源分區因應氣候變遷水資源管理能力調適研究(1/2)」,2010。
44. 經濟部水利署「強化南部水資源分區因應氣候變遷水資源管理能力調適研究(2/2)」,2011。
45. 經濟部水利署水利規劃試驗所,「曾文溪流域因應氣候變遷防洪及土砂研究計畫」,2013。
46. 嘉南農田水利會,「灌溉計畫書」,2002-2008。
47. 劉子明,「氣候變遷對區域水資源衝擊評估整合系統之研究」,國立臺灣大學生物環境系統工程學研究所,博士論文,2010。
48. 蔡安源,「氣候變遷對台灣區域水資源衝擊之研究」,國立臺灣海洋大學河海工程學系,博士論文,2011。
49. 蔡昀直,「供水系統綜合可靠度分析-以石門水庫為例」,碩士論文,2012。
50. 蔡家民,「應用系統動力模式模擬多目標水庫各標的權屬水量之分配管理」,國立成功大學水利及海洋工程學系碩博士班,碩士論文,2008。
51. 鍾侑達、郭峻菖、陳昶憲,「台灣區域降雨趨勢分析」,農業工程學報,第55卷,第4期,9-17頁,2009。
52. 簡嘉霖,「濁水溪流域之區域長期降雨變遷特性與預測」,國立中央大學土木工程學系,碩士論文,2010。
53. 蘇文瑞,「水資源供需指標建立之研究」,國立中央大學土木工程學系,博士論文,2000。 |